Microstructural Transformation and High-Temperature Aluminum Corrosion Properties of Co-Based Alloy Coating Prepared by Laser Cladding
Abstract
:1. Introduction
2. Materials and Experiments
2.1. Materials and Laser Cladding Procedure
2.2. Experiments
3. Results and Discussion
3.1. Microstructural Characterization
3.2. Hardness Distribution
3.3. Aluminum Corrosion Analysis
3.4. Aluminum Corrosion Resistance Mechanism
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Arif, A.F.M.; Sheikh, A.K.; Qamar, S.Z. A study of die failure mechanisms in aluminum extrusion. J. Mater. Process. Technol. 2003, 134, 318–328. [Google Scholar] [CrossRef]
- Cheng, W.; Wang, C. Effect of chromium on the formation of intermetallic phases in hot-dipped aluminide Cr–Mo steels. Appl. Surf. Sci. 2013, 277, 139–145. [Google Scholar] [CrossRef]
- Chen, G.; Wang, J.; Wang, D.; Xue, L.; Zeng, B.; Qin, B.; Tang, Z. Effect of liquid oxy-nitriding at various temperatures on wear and molten aluminum corrosion behaviors on AISI H13 steel. Corros. Sci. 2020, 178, 109088. [Google Scholar] [CrossRef]
- Terčelj, M.; Smolej, M.A.; Fajfar, P.; Turk, R. Laboratory assessment of wear on nitrided surfaces of dies for hot extrusion of aluminium. Tribol. Int. 2007, 40, 374–384. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, W.; Liu, H.; Zeng, C. Corrosion behavior of zirconium diboride coated stainless steel in molten 6061 aluminum alloy. Surf. Coat. Technol. 2017, 313, 129–135. [Google Scholar] [CrossRef]
- Zhang, X.; Li, X.; Chen, W. Interfacial reactions of duplex stainless steels with molten aluminum. Surf. Interface Anal. 2015, 47, 648–656. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, W. Review on corrosion-wear resistance performance of materials in molten aluminum and its alloys. Trans. Nonferrous Met. Soc. China 2015, 25, 1715–1731. [Google Scholar] [CrossRef]
- Weng, F.; Chen, C.; Yu, H. Research status of laser cladding on titanium and its alloys: A review. Mater. Des. 2014, 58, 412–425. [Google Scholar] [CrossRef]
- Sexton, L.; Lavin, S.; Byrne, G.; Kennedy, A. Laser cladding of aerospace materials. J. Mater. Process. Technol. 2002, 122, 63–68. [Google Scholar] [CrossRef]
- Liu, J.; Yu, H.; Chen, C.; Weng, F.; Dai, J. Research and development status of laser cladding on magnesium alloys: A review. Opt. Lasers Eng. 2017, 93, 195–210. [Google Scholar] [CrossRef]
- Lu, P.; Lewis, S.R.; Fretwell-Smith, S.; Engelberg, D.L.; Fletcher, D.I.; Lewis, R. Laser cladding of rail; the effects of depositing material on lower rail grades. Wear 2019, 438–439, 203045. [Google Scholar] [CrossRef]
- Joshi, V.; Srivastava, A.; Shivpuri, R. Intermetallic formation and its relation to interface mass loss and tribology in die casting dies. Wear 2004, 256, 1232–1235. [Google Scholar] [CrossRef]
- Khan, F.F.; Bae, G.; Kang, K.; Kumar, S.; Jeong, T.; Lee, C. Development of cermet coatings by kinetic spray technology for the application of die-soldering and erosion resistance. Surf. Coat. Technol. 2009, 204, 345–352. [Google Scholar] [CrossRef]
- Chen, G.; Wang, J.; Fan, H.; Wang, D.; Li, X.; Dong, H. Combat molten aluminum corrosion of AISI H13 steel by low-temperature liquid nitrocarburizing. J. Alloy. Compd. 2019, 776, 702–711. [Google Scholar] [CrossRef] [Green Version]
- López, A.J.; Rams, J. Protection of carbon steel against molten aluminum attack and high temperature corrosion using high velocity oxygen-fuel WC–Co coatings. Surf. Coat. Technol. 2015, 262, 123–133. [Google Scholar] [CrossRef]
- Vasić, M.M.; Žák, T.; Pizúrová, N.; Roupcová, P.; Minić, D.M. Thermally induced microstructural transformations and anti-corrosion properties of Co70Fe5Si10B15 amorphous alloy. J. Non. Cryst. Solids. 2018, 500, 326–335. [Google Scholar] [CrossRef]
- CZenk, C.H.; Bauer, A.; Goik, P.; Neumeier, S.; Stone, H.J.; Göken, M. Microstructure, Lattice misfit, and high-temperature strength of γ′-strengthened Co–Al–W–Ge model superalloys. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 2016, 47, 2141–2149. [Google Scholar]
- Zhao, J.; Gao, Q.; Wang, H.; Shu, F.; Zhao, H.; He, W.; Yu, Z. Microstructure and mechanical properties of Co-based alloy coatings fabricated by laser cladding and plasma arc spray welding. J. Alloy. Compd. 2019, 785, 846–854. [Google Scholar] [CrossRef]
- Yan, H.; Wang, A.; Xu, K.; Wang, W.; Huang, Z. Microstructure and interfacial evaluation of Co-based alloy coating on copper by pulsed Nd:YAG multilayer laser cladding. J. Alloy. Compd. 2010, 505, 645–653. [Google Scholar] [CrossRef]
- Shu, F.; Wu, L.; Zhao, H.; Sui, S.; Zhou, L.; Zhang, J.; He, W.; He, P.; Xu, B. Microstructure and high-temperature wear mechanism of laser cladded CoCrBFeNiSi high-entropy alloy amorphous coating. Mater. Lett. 2018, 211, 235–238. [Google Scholar] [CrossRef]
- Wang, G.; Zhang, J.; Shu, R.; Yang, S. High temperature wear resistance and thermal fatigue behavior of Stellite-6/WC coatings produced by laser cladding with Co-coated WC powder. Int. J. Refract. Met. Hard Mater. 2019, 81, 63–70. [Google Scholar] [CrossRef]
- Hidouci, A.; Pelletier, J.M.; Ducoin, F.; Dezert, D.; El Guerjouma, R. Microstructural and mechanical characteristics of laser coatings. Surf. Coat. Technol. 2000, 123, 17–23. [Google Scholar] [CrossRef]
- Lu, H.; Li, W.; Qin, E.; Liu, C.; Liu, S.; Zhang, W.; Wu, S. The gradient microstructure and high-temperature wear behavior of the cocrmosi coating by laser cladding. J. Therm. Spray Technol. 2020, 30, 968–976. [Google Scholar] [CrossRef]
- Cui, C.; Guo, Z.; Liu, Y.; Xie, Q.; Wang, Z.; Hu, J.; Yao, Y. Characteristics of cobalt-based alloy coating on tool steel prepared by powder feeding laser cladding. Opt. Laser Technol. 2007, 39, 1544–1550. [Google Scholar] [CrossRef]
- Estey, C.M.; Cockcroft, S.L.; Maijer, D.M.; Hermesmann, C. Constitutive behaviour of A356 during the quenching operation. Mater. Sci. Eng. A. 2004, 383, 245–251. [Google Scholar] [CrossRef]
- Pouraliakbar, H.; Khalaj, G.; Lidija Gomidželović, L.; Khalaj, M.J.; Nazerfakhari, M. Duplex ceramic coating produced by low temperature thermo-reactive deposition and diffusion on the cold work tool steel substrate: Thermodynamics, kinetics and modeling. Cream. Int. 2015, 41, 9350–9360. [Google Scholar] [CrossRef]
- Tang, N.; Li, Y.; Koizumi, Y.; Kurosu, S.; Chiba, A. Interfacial reaction between Co–Cr–Mo alloy and liquid Al. Corros. Sci. 2013, 75, 262–268. [Google Scholar] [CrossRef]
- Wang, Y.; Vecchio, K.S. Microstructure evolution in Fe-based-aluminide metallic-intermetallic laminate (MIL) composites. Mater. Sci. Eng. A 2016, 649, 325–337. [Google Scholar] [CrossRef]
- Shi, Z.; Cao, J.; Han, F. Preparation and characterization of Fe–Al intermetallic layer on the surface of T91 heat-resistant steel. J. Nucl. Mater. 2014, 447, 77–81. [Google Scholar] [CrossRef]
- Takata, N.; Nishimoto, M.; Kobayashi, S.; Takeyama, M. Crystallography of Fe2Al5 phase at the interface between solid Fe and liquid Al. Intermetallics 2015, 67, 1–11. [Google Scholar] [CrossRef]
- Gödecke, T.; Ellner, M. Phase equilibria in the Al-rich portion of the ternary system Co–Ni–Al at 75 and 78 at.% Al. Zeitschrift Fuer Met. Res. Adv. Tech. 1997, 88, 382–389. [Google Scholar]
- Murray, J.L. The Al–Cr (aluminum-chromium) system. J. Phase Equilibria Diffus. 1998, 19, 367–375. [Google Scholar] [CrossRef]
- Tang, N.; Li, Y.; Koizumi, Y.; Kurosu, S.; Chiba, A. Experimental and theoretical research on interfacial reaction of solid Co with liquid Al. Corros. Sci. 2003, 73, 54–61. [Google Scholar] [CrossRef]
Cr | W | Fe | Ni | Mn | C | Si | Mo | Co |
---|---|---|---|---|---|---|---|---|
1.2 | 4.5 | 3.0 | 3.0 | 1.0 | 1.2 | 1.2 | 1.0 | Bal. |
Si | Fe | Cu | Mn | Mg | Zn | Ti | Al |
---|---|---|---|---|---|---|---|
6.95 | 0.2 | 0.2 | 0.1 | 0.31 | 0.1 | 0.2 | Bal. |
Test point | Al | Co | Cr | Fe | Si | C |
---|---|---|---|---|---|---|
Spot1 | 55.2 | 0.3 | 7.4 | 17.7 | 8.9 | 0.7 |
Spot2 | 48.5 | 1.4 | 4.2 | 13.9 | 22.0 | 7.8 |
Spot3 | 55.3 | - | 4.3 | 22.0 | 8.2 | 7.1 |
Spot4 | 56.3 | 10.7 | 6.2 | 13.2 | 5.3 | 6.2 |
Spot5 | 57.2 | 2.6 | 7.9 | 16.0 | 7.2 | 5.1 |
Spot6 | 58.1 | 8.5 | 7.1 | 13.5 | 4.9 | 7.3 |
Spot7 | 56.1 | 2.9 | 7.5 | 15.5 | 6.6 | 7.1 |
Spot8 | - | 46.5 | 33.7 | 9.8 | 1.1 | 6.1 |
Spot9 | 61.7 | 16.1 | 11.1 | 5.6 | 3.9 | 1.6 |
Spot10 | 59.8 | 11.6 | 10.6 | 10.7 | 4.8 | 2.2 |
Spot11 | 62.8 | - | 7.4 | 16.6 | 9.9 | 3.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, R.; Zhang, M.; Yu, J.; Yang, Q.; Gao, S. Microstructural Transformation and High-Temperature Aluminum Corrosion Properties of Co-Based Alloy Coating Prepared by Laser Cladding. Coatings 2022, 12, 603. https://doi.org/10.3390/coatings12050603
Liu R, Zhang M, Yu J, Yang Q, Gao S. Microstructural Transformation and High-Temperature Aluminum Corrosion Properties of Co-Based Alloy Coating Prepared by Laser Cladding. Coatings. 2022; 12(5):603. https://doi.org/10.3390/coatings12050603
Chicago/Turabian StyleLiu, Rui, Mengyu Zhang, Jiacheng Yu, Qifan Yang, and Shiyou Gao. 2022. "Microstructural Transformation and High-Temperature Aluminum Corrosion Properties of Co-Based Alloy Coating Prepared by Laser Cladding" Coatings 12, no. 5: 603. https://doi.org/10.3390/coatings12050603
APA StyleLiu, R., Zhang, M., Yu, J., Yang, Q., & Gao, S. (2022). Microstructural Transformation and High-Temperature Aluminum Corrosion Properties of Co-Based Alloy Coating Prepared by Laser Cladding. Coatings, 12(5), 603. https://doi.org/10.3390/coatings12050603