Investigations on the Microstructure of an Aluminium Nitride Layer and Its Interface with the Aluminium Substrate (Part I)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material
2.2. Surface Treatment Technologies and Parameters
2.3. Characterization Methods
3. Results and Discussion
3.1. Characterization of the Base Material
3.2. Influence of the Process Parameters on the Results of Plasma Nitriding (PN)
3.3. High-Resolution Analysis of the Nitride Layer (tAlN ~ 4.3 µm)
3.3.1. Characterization of the Nitride Layer
- (A)
- Depth-dependent chemical composition
- Line I: The entire AlN layer thickness of ltotal = 5.5 µm (step size: 40 nm) with an intermetallic phase at the interface (Figure 4c).
- Line II: A small area at the interface of ltotal = 0.6 µm (step size: 20 nm) without the intermetallic phase (Figure 4d).
- Line III: A small area at or close to the interface of ltotal = 1.1 µm (step size: 40 nm) above a primary silicon precipitation (Figure 4e).
- (B)
- Identification of the phase composition
3.3.2. Characterization of the Interface between Nitride Layer and Base Material
- Interface between Al matrix and AlN layer
- B.
- Interface between primary silicon particles and the AlN layer
3.3.3. Characterization of Layer Hardness
4. Conclusions
- (1)
- The nitride layer consisted predominantly of AlN with small fractions of Al. This resulted from the well-known mechanism of outward nitriding, in which the Al diffuses from the substrate through the already formed nitride layer towards the surface. On cooling, unbound Al remained present in the nitride layer and probably accumulated in the region of the AlN crystallite boundaries. As a result of diffusion, localised cavities occurred beneath the nitride layer where an Al matrix was predominantly present rather than primary silicon or stable intermetallic phases.
- (2)
- Due to the AlN nanocrystallites (<50 nm), the proportion of grain and phase interfaces was very high, which led to very rapid diffusion, and thus to a relatively high growth rate.
- (3)
- The lower part of the nitride layer was characterised by a very high Mg concentration. Both oxygen and nitrogen were detected there, leading to the additional formation of MgO and Mg3N2.
- (4)
- On the primary silicon precipitates, the nitride layer was in principle well bonded, but cracks were also to be found in isolated cases. These were either due to shrinkage cracks during cooling or to preparation-related effects. No cracks were found on other microstructural constituents. Up to a distance of approximately 200 nm above the primary silicon precipitates, an increased Si concentration was detected, which could have indicated diffusion. The influence of roughness was ruled out due to the position of the reflections in the SAED measurement.
- (5)
- The nitride layer was mostly coherently bonded to the Al substrate.
- (6)
- Cu enrichment occurred in the Al matrix during nitriding, which exceeded the Cu solubility in the Al solid solution at room temperature. However, no Cu-containing phases were detected. It is conceivable that Gunier–Preston zones formed that increased the hardness in this area. It is also possible that Cu was influenced by the diffusion current of Al and Mg and accumulated at the interface.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stock, H.-R.; Chen, H.-Y.; Mayr, R. Plasmanitrieren von Aluminiumwerkstoffen—Möglichkeiten und Grenzen eines neuen Verfahrens, Teil 1: Vorreinigung der Oberflächen. Aluminium 1994, 70, 220–228. [Google Scholar]
- Reinhold, B. Untersuchungen zum Einfluss des Sauerstoffpartialdrucks beim Plasmanitrieren von Aluminiumlegierungen und Chromlegierten Stählen. Ph.D. Thesis, TU Bergakademie Freiberg, Freiberg, Germany, 2004. [Google Scholar]
- Dalke, A.; Buchwalder, A.; Spies, H.-J.; Biermann, H.; Zenker, R. EB Surface Alloying and Plasma Nitriding of Different Al Alloys. Mater. Sci. Forum 2011, 690, 91–94. [Google Scholar]
- Dalke, A.; Buchwalder, A.; Spies, H.-J.; Zenker, R. Influence of process control on nitride layer formation of spray formed Al alloys during dc pulse plasma nitriding. In Proceedings of the IFHTSE 2014, München, Germany, 12–15 May 2014. [Google Scholar]
- Spies, H.-J. Stand und Entwicklung des Nitrierens von Aluminium- und Titanlegierungen. HTM J. Heat Treat. Mater. 2000, 55, 141–150. [Google Scholar] [CrossRef]
- Spies, H.-J.; Dalke, A. Nitriding of Aluminum and its Alloys. In ASM Handbook, Heat Treating of Nonferrous Alloys; Totten, G.E., Ed.; ASM International: Geauga, OH, USA, 2016; Volume 4E, pp. 302–307. [Google Scholar] [CrossRef]
- Telbizova, T.; Parascandola, S.; Kreissig, U.; Günzel, R.; Möller, W. Mechanism of diffusional transport during ion nitriding of aluminium. Appl. Phys. Lett. 2000, 76, 1404–1406. [Google Scholar] [CrossRef]
- Stock, H.-R.; Chen, H.-Y.; Mayr, R. Plasmanitrieren von Aluminiumwerkstoffen—Möglichkeiten und Grenzen eines neuen Verfahrens, Teil 2: Untersuchungen von plasmanitrieren Aluminiumoberflächen. Aluminium 1994, 70, 463–471. [Google Scholar]
- Reinhold, B.; Naumann, J.; Spies, H.-J. Einfluss von Zusammensetzung und Bauteilgeometrie auf das Nitrierverhalten von Aluminiumlegierungen. HTM J. Heat Treat. Mater. 1998, 53, 329–336. [Google Scholar] [CrossRef]
- Buchwalder, A.; Dalke, A.; Spies, H.-J.; Zenker, R. Plasma nitriding of spray-formed aluminium alloys. Adv. Eng. Mater. 2012, 13, 970–975. [Google Scholar] [CrossRef]
- Buchwalder, A.; Spies, H.-J.; Zenker, R.; Dalke, A.; Krug, P. Plasmanitrieren von sprühkompaktierten Al-Legierungen. HTM J. Heat Treat. Mater. 2011, 66, 240–247. [Google Scholar] [CrossRef]
- Klimera, A. Festigkeitssteigerung von Aluminiumnitrid-Keramiken. Ph.D. Thesis, University Würzburg, Würzburg, Germany, 2008. [Google Scholar]
- Jinschek, J.R. Untersuchungen von Aluminiumnitrid-Schichten auf Silizium-Substraten mittels Transmissionselektronenmikroskopie. Ph.D. Thesis, University Jena, Jena, Germany, 2001. [Google Scholar]
- Heyden, D. Nitrierung von Aluminium mit Gepulster Ionenstrahlung. Ph.D. Thesis, University Heidelberg, Heidelberg, Germany, 2001. [Google Scholar]
- Vacandio, F.; Massiani, Y.; Gravier, P.; Garnier, A. A study of the physical properties and electrochemical behavior of aluminium nitride films. Surf. Coat. Technol. 1997, 92, 221–229. [Google Scholar] [CrossRef]
- Barnikel, J. Nitrieren von Aluminiumwerkstoffen mit UV-Laserstrahlung. Ph.D. Thesis, University Erlangen-Nürnberg, Erlangen-Nürnberg, Germany, 1998. [Google Scholar]
- Blawert, C.; Mordike, B.L. Plasma immersion ion implantation of pure aluminium at elevated temperatures. Nucl. Instr. Meth. Phys. Res. B 1997, 127, 873–878. [Google Scholar] [CrossRef]
- Chen, H.-Y.; Stock, H.-R.; Mayr, P. Plasma-assisted nitriding of aluminium. Surf. Coat. Technol. 1994, 64, 139–147. [Google Scholar] [CrossRef]
- Youngman, R.; Harris, J. Luminescence studies of oxygen-related defects in aluminum nitride. J. Am. Ceram. Soc. 1990, 73, 3238–3246. [Google Scholar] [CrossRef]
- Dalke, A. Beitrag zur kombinierten Randschichtbehandlung von Aluminiumlegierungen: Elektronenstrahlumschmelzlegieren mit Fe-Basis-Zusatzstoffen und Plasmanitrieren. Ph.D. Thesis, TU Bergakademie Freiberg, Freiberg, Germany, 2016. [Google Scholar]
- Chen, P.-C.; Shih, T.-S.; Wu, C.-Y. Thermally formed oxides on Al-2 and 3.5 mass% Mg alloys heated and held in different gases. Mater. Trans. 2009, 50, 2366–2372. [Google Scholar] [CrossRef]
- Stock, H.R.; Jarms, C.; Seidel, F.; Döring, J.E. Fundamental and applied aspects of the plasma-assisted nitriding process for aluminium and its alloys. Surf. Coat. Technol. 1997, 94–95, 247–254. [Google Scholar] [CrossRef]
- Meletis, E.I.; Yan, S. Formation of aluminum nitride by intensified plasma ion nitriding. J. Vac. Sci. Technol. A 1991, 9, 2279–2284. [Google Scholar] [CrossRef]
- Bouvier, Y.; Mutel, B.; Grimblot, J. Use of an Auger parameter for characterizing the Mg chemical state in different materials. Surf. Coat. Technol. 2004, 180–181, 169–173. [Google Scholar] [CrossRef]
- Yang, C.; Lü, H.; Chen, D.; Liu, F. In situ synthesis and formation mechanism of AlN in Mg-Al alloys. Rare Metal Mat. Eng. 2016, 45, 18–22. [Google Scholar] [CrossRef] [Green Version]
- Kent, D.; Drennan, J.; Schaffer, G. A morphological study of nitride formed on Al at low temperature in the presence of Mg. Acta Mater. 2011, 59, 2469–2480. [Google Scholar] [CrossRef]
- Hegelmann, E.; Jung, A.; Hengst, P.; Zenker, R.; Buchwalder, A. Investigations regarding electron beam surface remelting of plasma nitrided spray-formed hypereutectic Al-Si alloy. Adv. Eng. Mater. 2018, 20, 1800244. [Google Scholar] [CrossRef]
- Buchwalder, A.; Böcker, J.; Hegelmann, E.; Jung, A.; Michler, M. Investigations on the influence of a subsequent electron beam (EB) remelting on the microstructure of an aluminium nitride layer formed on an aluminium substrate (Part II). Coatings, 2022; in press. [Google Scholar]
- Linnemann, A.; Kühl, S. Grundlagen der Licht- und Elektronenmikroskopie; Eugen Ulmer KG: Stuttgart, Germany, 2018. [Google Scholar]
- DIN EN ISO 14577: 01.11.2015; Metallische Werkstoffe—Instrumentierte Eindringprüfung zur Bestimmung der Härte und anderer Werkstoffparameter. Available online: https://www.beuth.de/en/standard/din-en-iso-14577-1/190992638 (accessed on 1 April 2022).
- Oettel, H.; Schumann, H. Metallografie mit einer Einführung in die Keramografie, 15th ed.; WILEY VCH Verlag: Weinheim, Germany, 2011. [Google Scholar]
- Williams, D.B.; Carter, C.B. Transmissions Electron Microscopy—A Textbook for Materials Science; Plenum Press: New York, NY, USA, 1996. [Google Scholar]
- Buchwalder, A.; Zenker, R. Pre- and Post-Surface Treatments using Electron Beam Technology for Load-Related Application of Thermochemical and PVD Hard Coatings on Soft Substrate Materials. Surf. Coat. Technol. 2019, 375, 920–932. [Google Scholar] [CrossRef]
- Buchwalder, A.; Dalke, A.; Spies, H.-J.; Zenker, R. Studies of technological parameters influencing the nitriding behavior of spray-formed Al alloys. Surf. Coat. Technol. 2013, 236, 63–69. [Google Scholar] [CrossRef]
- Dalke, A.; Spies, H.-J.; Biermann, H. Plasmanitrieren von Aluminiumlegierungen. HTM J. Heat Treat. Mater. 2011, 66, 116–123. [Google Scholar] [CrossRef]
- Quast, M.; Mayr, P.; Stock, H.R. In situ and ex situ examination of plasma-assisted nitriding of aluminium alloys. Surf. Coat. Technol. 2001, 135, 238–249. [Google Scholar] [CrossRef]
- Figueroa, U.; Salas, O.; Oseguera, J. Production of AlN films: Ion nitriding vs. PVD coatings. Thin Solid Films 2004, 469–470, 295–303. [Google Scholar] [CrossRef]
- Niessner, W. Elektronen-Energieverlust-Spektroskopie an Gruppe-III-Nitriden und Übergangsmetall-Oxiden. Ph.D. Thesis, University Gießen, Gießen, Germany, 2000. [Google Scholar]
- Funamizu, Y.; Watanabe, K. Interdiffusion in the Al-Cu System. Trans. Jpn. Inst. Met. 1971, 12, 147–152. [Google Scholar] [CrossRef] [Green Version]
- Rothman, S.J. Tracer Diffusion of Magnesium in Aluminium Single Crystals. Phys. Stat. Sol. B 1974, 63, 29–33. [Google Scholar] [CrossRef]
Element Concentration [wt.%] | Hardness | ||||||
---|---|---|---|---|---|---|---|
Al | Si | Fe | Mg | Cu | Zr | HIT 20 mN [GPa] | |
DISPAL S232® | Bas. | 16.4 | 5.2 | 0.4 | 2.6 | 0.5 | 2 |
Set | Nitriding Parameters | Layer Characteristics | ||||||
---|---|---|---|---|---|---|---|---|
TN [°C] | p [Pa] | tPlasma [h] | tN, eff [h] | τ | tAlN [µm] | Ra [µm] | Rz [µm] | |
PN1 | 465 | 150 | 6 | 1.53 | 0.30–0.39 | 1.5 | 0.36 ± 0.015 | 3.1 ± 0.19 |
PN2 | 5 | 2.30 | 0.25–0.33 | 3.0 | 0.28 ± 0.07 | 2.6 ± 0.01 | ||
PN3 | 475 | 8 | 2.57 | 0.25–0.35 | 4.3 | 0.48 ± 0.03 | 4.3 ± 0.25 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Buchwalder, A.; Böcker, J.; Hegelmann, E.; Klemm, V. Investigations on the Microstructure of an Aluminium Nitride Layer and Its Interface with the Aluminium Substrate (Part I). Coatings 2022, 12, 618. https://doi.org/10.3390/coatings12050618
Buchwalder A, Böcker J, Hegelmann E, Klemm V. Investigations on the Microstructure of an Aluminium Nitride Layer and Its Interface with the Aluminium Substrate (Part I). Coatings. 2022; 12(5):618. https://doi.org/10.3390/coatings12050618
Chicago/Turabian StyleBuchwalder, Anja, Jan Böcker, Eugen Hegelmann, and Volker Klemm. 2022. "Investigations on the Microstructure of an Aluminium Nitride Layer and Its Interface with the Aluminium Substrate (Part I)" Coatings 12, no. 5: 618. https://doi.org/10.3390/coatings12050618
APA StyleBuchwalder, A., Böcker, J., Hegelmann, E., & Klemm, V. (2022). Investigations on the Microstructure of an Aluminium Nitride Layer and Its Interface with the Aluminium Substrate (Part I). Coatings, 12(5), 618. https://doi.org/10.3390/coatings12050618