The Effect of Interlayer Microstructure on the Thermal Boundary Resistance of GaN-on-Diamond Substrate
Abstract
:1. Introduction
2. Experimental Details
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Asif Khan, M.; Bhattarai, A.; Kuznia, J.N.; Olson, D.T. High electron mobility transistor based on a GaN/AlxGa1−xN heterojunction. Appl. Phys. Lett. 1993, 63, 1214–1215. [Google Scholar] [CrossRef]
- Wang, X.L.; Chen, T.S.; Xiao, H.L.; Tang, J.; Ran, J.X.; Zhang, M.L.; Feng, C.; Hou, Q.F.; Wei, M.; Jiang, L.J.; et al. An internally-matched GaN HEMTs device with 45.2 W at 8 GHz for X-band application. Solid State Electron. 2009, 53, 332–335. [Google Scholar] [CrossRef]
- Jia, X.; Wei, J.; Huang, Y.; Shao, S.; An, K.; Kong, Y.; Liu, J.; Chen, L.; Li, C. Fabrication of low stress GaN-on-diamond structure via dual-sided diamond film deposition. J. Mater. Sci. 2021, 56, 6903–6911. [Google Scholar] [CrossRef]
- Nazari, M.; Hancock, B.L.; Piner, E.L.; Holtz, M.W. Self-heating profile in an AlGaN/GaN heterojunction field-effect transistor studied by ultraviolet and visible micro-Raman spectroscopy. IEEE Trans. Electron. Devices 2015, 62, 1467–1472. [Google Scholar] [CrossRef]
- Ahmad, I.; Kasisomayajula, V.; Song, D.Y.; Tian, L.; Berg, J.M.; Holtz, M. Self-heating in a GaN based heterostructure field effect transistor: Ultraviolet and visible Raman measurements and simulations. J. Appl. Phys. 2006, 100, 1888. [Google Scholar] [CrossRef] [Green Version]
- Yan, Z.; Julian, A.; James, P.; Sun, H.; Xing, G.; Andy, X.; Edward, B.; Michael, B.; Grotjohn, T.A.; Cathy, L.; et al. Barrier-layer optimization for enhanced GaN-on-diamond device cooling. ACS Appl. Mater. Interfaces 2017, 9, 34416–34422. [Google Scholar]
- Sun, F.; Wang, X.; Ming, Y.; Chen, Z.; Zhang, H.; Tang, D. Simultaneous measurement of thermal conductivity and specific heat in a single TDTR experiment. Int. J. Thermophys. 2018, 39, 5. [Google Scholar] [CrossRef]
- Luke, Y.; Jonathan, A.; Xing, G.; Lee, C.; Bai, T. Low Thermal boundary resistance interfaces for GaN-on-diamond devices. ACS Appl. Mater. Interfaces 2018, 10, 24302–24309. [Google Scholar]
- Jia, X.; Wei, J.; Kong, Y.; Li, C.-M.; Liu, J.; Chen, L.; Sun, F.; Wang, X. The influence of dielectric layer on the thermal boundary resistance of GaN-on-diamond substrate. Surf. Interface Anal. 2019, 51, 783–790. [Google Scholar] [CrossRef]
- Pop, E.; Sinha, S.; Goodson, K.E. Heat generation and transport in nanometer-scale transistors. Proc. IEEE 2006, 94, 1587–1601. [Google Scholar] [CrossRef]
- Cahill, D.G.; Braun, P.V.; Chen, G.; Clarke, D.R.; Fan, S.; Goodson, K.E.; Keblinski, P.; King, W.P.; Mahan, G.D.; Majumdar, A.; et al. Nanoscale thermal transport. II. 2003–2012. Appl. Phys. Rev. 2014, 1, 011305. [Google Scholar] [CrossRef] [Green Version]
- Cho, J.; Goodson, K.E. Cool electronics. Nat. Mater. 2015, 14, 136–137. [Google Scholar] [CrossRef]
- Cho, J.; Li, Z.; Asheghi, M.; Goodson, K.E. Near-junction thermal management: Thermal conduction in gallium nitride composite substrates. Annu. Rev. Heat Transf. 2015, 18, 7–45. [Google Scholar] [CrossRef] [Green Version]
- Meneghesso, G.; Verzellesi, G.; Danesin, F.; Rampazzo, F.; Zanon, F.; Tazzoli, A.; Mene, M.; Zanoni, E. Reliability of GaN high-electron-mobility transistors: State of the art and perspectives. IEEE Trans. Device Mater. Reliab. 2008, 8, 332–343. [Google Scholar] [CrossRef]
- Alamo, J.; Joh, J. GaN HEMT reliability. Microelectron. Reliab. 2009, 49, 1200–1206. [Google Scholar] [CrossRef]
- Francis, D.; Faili, F.; Babic, D.; Ejeckam, F.; Nurmikko, A.; Maris, H. Formation and characterization of 4-inch GaN-on-diamond substrates. Diam. Relat. Mater. 2010, 19, 229–233. [Google Scholar] [CrossRef]
- Dumka, D.C.; Chou, T.M.; Faili, F.; Francis, D.; Ejeckam, F. AlGaN/GaN HEMTs on diamond substrate with over 7 W/mm output power density at 10 GHz. Electron. Lett. 2013, 49, 1298–1299. [Google Scholar] [CrossRef]
- Gracio, J.J.; Fan, Q.H.; Madaleno, J.C. Diamond growth by chemical vapour deposition. J. Phys. Appl. Phys. 2010, 43, 374017. [Google Scholar] [CrossRef]
- García, S.; Íñiguez-de-la-Torre, I.; Mateos, J.; González, T.; Pérez, S. Impact of substrate and thermal boundary resistance on the performance of AlGaN/GaN HEMTs analyzed by means of electro-thermal Monte Carlo simulations. Semicond. Sci. Technol. 2016, 31, 065005. [Google Scholar] [CrossRef]
- Zou, B.; Sun, H.; Guo, H.; Dai, B.; Zhu, J. Thermal characteristics of GaN-on-diamond HEMTs: Impact of anisotropic and inhomogeneous thermal conductivity of polycrystalline diamond. Diam. Relat. Mater. 2019, 95, 28–35. [Google Scholar] [CrossRef]
- Sun, H.; Simon, R.B.; Pomeroy, J.W.; Francis, D.; Faili, F.; Twitchen, D.J.; Kuball, M. Reducing GaN-on-diamond interfacial thermal resistance for high power transistor applications. Appl. Phys. Lett. 2015, 106, 111906. [Google Scholar] [CrossRef] [Green Version]
- Liu, D.; Francis, D.; Faili, F.; Middleton, C.; Anaya, J.; Pomeroya, J.W.; Twitchen, D.J.; Kuball, M. Impact of diamond seeding on the microstructural properties and thermal stability of GaN-on-diamond wafers for high-power electronic devices. Scr. Mater. 2017, 128, 57–60. [Google Scholar] [CrossRef] [Green Version]
- Malakoutian, M.; Ren, C.; Woo, K.; Li, H.; Chowdhury, S. Development of polycrystalline diamond compatible with the latest n-polar GaN mm-wave technology. Cryst. Growth Des. 2021, 21, 2624–2632. [Google Scholar] [CrossRef]
- Malakoutian, M.; Field, D.E.; Hines, N.J.; Pasayat, S.; Graham, S.; Kuball, M.; Chowdhury, S. Record-low thermal boundary resistance between diamond and GaN-on-SiC for enabling radiofrequency device cooling. ACS Appl. Mater. Interfaces 2021, 13, 60553–60560. [Google Scholar] [CrossRef] [PubMed]
- Ziade, E.; Jia, Y.; Brummer, G.; Nothern, D.; Moustakas, T.; Schmidt, A.J. Thickness dependent thermal conductivity of gallium nitride. Appl. Phys. Lett. 2017, 110, 031903. [Google Scholar] [CrossRef]
- Cho, J.; Francis, D.; Altman, D.H.; Asheghi, M.; Goodson, K.E. Phonon conduction in GaN-diamond composite substrates. J. Appl. Phys. 2017, 121, 055105. [Google Scholar] [CrossRef]
- Ziade, E.; Yang, J.; Brummer, G.; Nothern, D.; Moustakas, T.; Schmidt, A.J. Thermal transport through GaN–SiC interfaces from 300 to 600 K. Appl. Phys. Lett. 2015, 107, 091605. [Google Scholar] [CrossRef]
- Hartmann, J.; Voigt, P.; Reichling, M. Measuring local thermal conductivity in polycrystalline diamond with a high resolution photothermal microscope. J. Appl. Phys. 1997, 81, 2966–2972. [Google Scholar] [CrossRef]
- Cho, J.; Li, Y.; Hoke, W.E.; Altman, D.H.; Asheghi, M.; Goodson, K.E. Phonon scattering in strained transition layers for GaN heteroepitaxy. Phys. Rev. B 2014, 89, 182–187. [Google Scholar] [CrossRef] [Green Version]
- Cho, J.; Chu, K.K.; Chao, P.C.; McGray, C.; Asheghi, M.; Goodson, K.E. Thermal Conduction Normal to Thin Silicon Nitride Films on Diamond and GaN. In Proceedings of the Fourteenth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), Orlando, FL, USA, 27–30 May 2014. [Google Scholar]
- Bai, S.; Tang, Z.; Huang, Z.; Yu, J. Thermal characterization of Si3N4 thin films using transient thermoreflectance technique. IEEE Trans. Ind. Electron. 2009, 56, 3238–3243. [Google Scholar]
- Zhou, X.W.; Jones, R.E.; Kimmer, C.J.; Duda, J.C.; Hopkins, P.E. Relationship of thermal boundary conductance to structure from an analytical model plus molecular dynamics simulations. Phys. Rev. B 2013, 87, 1504–1509. [Google Scholar] [CrossRef] [Green Version]
- Cahill, D.G.; Ford, W.K.; Goodson, K.E.; Mahan, G.D.; Majumdar, A.; Maris, H.J.; Merlin, R.; Phillpot, S.R. Nanoscale thermal transport. J. Appl. Phys. 2003, 93, 793–818. [Google Scholar] [CrossRef] [Green Version]
Material | ICP/W | RF/W | Chamber Pressure/Pa | O2/Sccm | Ar/Sccm | SF6/Sccm |
---|---|---|---|---|---|---|
SiNx | 100 | 10 | 1 | 5 | 10 | 10 |
Layer | Al | Diamond | GaN | Si |
---|---|---|---|---|
Thickness (nm) | 100 | 2000 | 2000 | 500,000 |
Thermal conductivity (W/m·K) | 237 * | fitted | 130 * | 148 * |
Specific heat (J/kgK) | 896 * | 500 * | 430 * | 700 * |
Density (kg/m3) | 2700 | 3500 | 6150 | 2330 |
Structure | Nucleation (12% CH4) | Grow Time (5% CH4) | TBReff,Dia/GaN (m2KGW−1) |
---|---|---|---|
SiNx(orig) | 5 min/750 °C | 120 min/800 °C | 40.5 ± 2.5 |
SiNx(Peri) | 32.2 ± 1.8 | ||
SiNx(80 nm) | 38.8 ± 1.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jia, X.; Huang, L.; Sun, M.; Zhao, X.; Wei, J.; Li, C. The Effect of Interlayer Microstructure on the Thermal Boundary Resistance of GaN-on-Diamond Substrate. Coatings 2022, 12, 672. https://doi.org/10.3390/coatings12050672
Jia X, Huang L, Sun M, Zhao X, Wei J, Li C. The Effect of Interlayer Microstructure on the Thermal Boundary Resistance of GaN-on-Diamond Substrate. Coatings. 2022; 12(5):672. https://doi.org/10.3390/coatings12050672
Chicago/Turabian StyleJia, Xin, Lu Huang, Miao Sun, Xia Zhao, Junjun Wei, and Chengming Li. 2022. "The Effect of Interlayer Microstructure on the Thermal Boundary Resistance of GaN-on-Diamond Substrate" Coatings 12, no. 5: 672. https://doi.org/10.3390/coatings12050672
APA StyleJia, X., Huang, L., Sun, M., Zhao, X., Wei, J., & Li, C. (2022). The Effect of Interlayer Microstructure on the Thermal Boundary Resistance of GaN-on-Diamond Substrate. Coatings, 12(5), 672. https://doi.org/10.3390/coatings12050672