
Citation: Guo, Q.; Li, X.; Lin, N.; Liu,

J. Influence of Rust Inhibitors on the

Microstructure of a Steel Passive Film

in Chloride Concrete. Coatings 2022,

12, 692. https://doi.org/10.3390/

coatings12050692

Academic Editor: Paolo Castaldo

Received: 4 April 2022

Accepted: 16 May 2022

Published: 18 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

coatings

Article

Influence of Rust Inhibitors on the Microstructure of a Steel
Passive Film in Chloride Concrete
Qun Guo 1, Xiaozhen Li 2, Nan Lin 2 and Junzhe Liu 1,*

1 College of Architecture Engineering, Qingdao Agricultural University, Qingdao 266109, China;
20202204007@stu.qau.edu.cn

2 College of Civil and Environmental Engineering, Ningbo University, Ningbo 315211, China;
lixiaozhen01@126.com (X.L.); ln17855824297@126.com (N.L.)

* Correspondence: liujunzhe@qau.edu.cn

Abstract: To compare the corrosion inhibition behaviors of rust inhibitors with different mechanisms
on steel bars, the rust resistance effect of sodium molybdate (Na2MoO4), sodium chromate (Na2CrO4),
benzotriazole (BTA), N-N dimethyl ethanolamine, sodium molybdate (Na2MoO4) + benzotriazole
(BTA), and sodium chromate (Na2CrO4) + benzotriazole (BTA) on steel bars in a simulated chloride
concrete pore solution was studied. The rust resistance effects of different types of rust inhibitors
were assessed by electrochemical impedance spectroscopy (EIS), X-ray photoelectron spectroscopy
(XPS), X-ray diffraction (XRD), and scanning electron microscopy (SEM). The effects of different types
of rust inhibitors on the film formation characteristics of a passive film on a steel bar surface were
expounded. The results show that: When sodium molybdate (Na2MoO4) and benzotriazole (BTA)
acted together, the impedance value and the capacitive reactance arc radius were the largest, and
the density of the passive film and the inhibition efficiency were the highest. The composition of the
passive film was primarily composed of iron compounds, and it also contained oxide and adsorption
films that were formed on the steel bar surface by the rust inhibitors. The rust resistance effect was
proportional to the compactness of the passive film.

Keywords: concrete; chlorine salt erosion; rust inhibitor; passive film; microstructure

1. Introduction

The chloride-induced corrosion of steel bars in concrete is the main cause of premature
damage to concrete [1,2]. Corrosion products expand the volume of the steel bar, result-
ing in concrete cracking along the length of steel bar, thereby reducing the durability of
concrete [3,4]. Generally, when the steel bar is placed in highly alkaline concrete, a dense
passive film is formed on the surface. However, when chloride ions erode the steel bar,
the original alkalinity of the concrete pore fluid near the steel bar passive film is locally
weakened. After the alkalinity decreases to a certain value, the passive film of the steel bar
is destroyed and begins to rust. The chloride ion penetrates the defective passive film and
reacts with the iron so that the exposed part becomes the anode of the corrosive battery.
The part of the passive film that has not been broken down is used as the cathode of the
battery. In this way, a corrosion battery with a small anode and large cathode is formed,
which accelerates the corrosion of steel bar [5,6]. Previous research indicates [7,8] that the
composition and structure of the passive film affect the compactness of the passive film
and thereby affect the corrosion rate of the steel bar. Therefore, the corrosion protection of
the steel bar is the key to improving the service life of reinforced concrete structures.

There are many ways to prevent steel bar corrosion [9,10]. However, many studies
showed [11,12] that adding rust inhibitors is the simplest and most effective way to inhibit
the corrosion of a steel bar. In the corrosive environment, the passivation environment
in concrete could be improved by using the rust inhibitor, which ensured the steel bar
was not rusted [13]. According to the mechanism of action, rust inhibitors are divided
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into anode rust inhibitors, cathode rust inhibitors, and composite rust inhibitors. Anodic
rust inhibitors include nitrite, chromate, and molybdate [14]. They prevent steel bar
corrosion by improving the passive film and reducing the contact between the steel bar
and oxygen [15,16]. Unfortunately, the anodic rust inhibitor causes the pitting corrosion
of the steel bar to accelerate corrosion within a certain concentration range. Cathodic
rust inhibitors includes organic carboxylic acids, organic aldehydes, organic amines, and
alcohols [17]. They improve the corrosion resistance by forming an adsorption film on
the steel bar surface [18–20]. The composite rust inhibitor has the characteristics of the
single rust inhibitor and overcomes the shortcomings of the single rust inhibitor. This kind
of rust inhibitor inhibits the dissolution of the anode and provides a protective barrier
for the cathode. Okeniyi et al. [21] found that concrete mixed with 0.145 M potassium
chromate has the best inhibition effect. Lin et al. [22] studied the rust resistance effect of a
composite calcium lignosulfonate and Na2MoO4 on a steel bar in a simulated carbonated
concrete pore solution by electrochemical and surface analysis techniques. They found
that the calcium lignosulfonate and Na2MoO4 showed synergistic corrosion inhibition.
Through electrochemical and microscopic tests, Zhang et al. [23] found that the the corrosion
inhibition of a steel bar was the best when the concrete was mixed with 0.5% NaNO2 and
0.5% benzotriazole. To reduce the corrosion of a steel bar in concrete, Ryu et al. [24] studied
the inhibition efficiency of DMEA under the condition of different concentrations of NaCl
by electrochemical methods. They found that DMEA effectively reduced the corrosion
rate. Although research on rust inhibitors is relatively extensive, there are relatively few
studies comparing rust inhibitors with different action mechanisms. Under chloride attack
conditions, there is no systematic study on the effect of rust inhibitors with different
mechanisms on the microstructure of the passive film.

Therefore, this paper analyzes the effect of different rust inhibitors on the corrosion
inhibition of the steel under the condition of chloride corrosion by electrochemical and
microscopic methods. The relationship between the rust resistance effect and passive film
microstructure is explored. This provides a theoretical basis for optimizing the passive film
structure and improving the application of rust inhibitors in reinforced concrete.

2. Materials and Methods
2.1. Materials

Grade HPB235 (Ningbo Zhedong building materials factory, Ningbo, China) round
steel bars with a diameter of 8 mm were used in preparation of the 2 mm thick steel samples
used in the experiments. Steel samples with a length of 60 mm were also prepared. All
steel samples were soaked in 10% ammonium citrate solution for five days to remove the
oxide. Then, steel samples were washed with water, dried with a towel, and placed in an
oven at about 100 ◦C for 10 min. After polishing with sandpaper, the grease on the steel
samples was removed with absolute ethanol. At last, the steel samples without rust marks
were wrapped with plastic wrap. The main chemical composition of the steel bar is shown
in Table 1. Sodium chromate (Na2CrO4), sodium molybdate (Na2MoO4), benzotriazole
(BTA), and N-N dimethyl ethanolamine (DMEA) were used as rust inhibitors. The purity
was over than 99.9%, and the content of chloride ions was less than 0.01%. Additionally,
Table 2 shows the physical property index of the rust inhibitors.

Table 1. Chemical composition of the HPB235 round steel bar.

Elements C Si Mn P Al Cr Ni S Fe

wt% 0.038 0.03 0.21 0.012 0.01 0.01 0.01 0.01 Balance
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Table 2. Physical property index of the rust inhibitors.

Rust Inhibitor Melting Point (◦C) Water Solubility Density (g/mL)

Na2CrO4 792 Soluble in water 2.723
Na2MoO4 687 Slightly soluble in water 3.28

BTA 98.5 Slightly soluble in water 1.574
DMEA −59 Slightly soluble in water 0.89

2.2. Sample Preparation

First, the simulated concrete hole solution [25,26] with a pH of 13.3 was prepared. The
solution was prepared by 0.001 mol/L Ca(OH)2, 0.200 mol/L NaOH, and 0.600 mol/L
KOH. NaCl and the rust inhibitor were added to the solution, and the content is shown in
Table 3. During the test, in order to ensure the pH of the simulated solution did not change
more than 0.1, a 0.8 mol/L NaHCO3 solution was used to adjust the pH downward, and
the 0.1 mol/L NaOH solution was used to adjust the pH of the solution upward. Three
steel samples with a thickness of 2 mm were added to each test group. At the same time, a
50 mm × 50 mm × 50 mm cement specimen was made for the electrochemical test. The
schematic diagram of the specimen is shown in Figure 1. A two-electrode system was
adopted. The embedded steel sample in the center of the specimen was used as the working
electrode end. The stainless steel mesh was fixed on the side of the specimen as a reference
electrode when the specimen was made. The content of NaCl and rust inhibitor was the
same as above. The electrochemical impedance spectrum was tested after curing for 28 days
and 90 days. After six months, the steel samples in the solution were taken out for XPS,
XRD, and SEM tests. The steel samples were weighed and recorded as m0 and immersed
in 10% ammonium citrate solution for dusting. Then, the steel samples were weighed
and recorded as m. Thereby, the weight loss mass m0-m was obtained. Additionally, the
inhibition efficiency (IE%) [27] of the rust inhibitor was calculated according to Equation (1):

IE% =

(
1− 4w
4w0

)
× 100% (1)

where4w0 is the weight loss mass of the steel without the rust inhibitor in the solution;
and4w is the weight loss mass of the steel when adding the rust inhibitor to the solution.

Table 3. The content of the rust inhibitor and NaCl g/L.

NaCl Na2CrO4 Na2MoO4 BTA DMEA Na2CrO4 + BTA Na2MoO4 + BTA

8.42 15 15 15 15 7.5 + 7.5 7.5 + 7.5
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Figure 1. Schematic diagram of the electrochemical specimen.

2.3. Test Parameter Setting

The electrochemical impedance spectra of the steel samples were measured by PAR-
STAT 3000 A electrochemical workstation (Princeton Corporation, Ningbo, China). The
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frequency range was 1 Hz–10 KHz, the amplitude was 5 mV, and the application voltage
range was ±6 V.

XPS used a magnesium target. The X-ray emission current was 20 mA. The high
voltage of the X-ray source was 10 kV, the multiplier voltage was 2.8 kV, anda the passing
energy of full-spectrum was 100 eV. The passing energy of narrow scanning was 50 eV,
and scanning times were 20. Additionally, each step time was l0 m/s. After the XPS
test, the data were fitted using the CasaXPS2.3.16 software. The binding energies of all
elements were calibrated with the C1s as the standard, and the binding energy of carbon
was 284.8 eV.

The XRD model was D8Advance Davinci, using Cu Kα1 radiation. Additionally,
the tube voltage was 40 kV, and the tube current was 40 mA. The scanning method was
continuous scanning, and the range was 20~90◦, with a rate of 8◦/min and step size of 0.02◦.

The model of SEM was S-4800. The cold-field-emission electron source, backscat-
tered electron resolution was 3.0 nm (15 kV), accelerating voltage was 0.5~30.9 kV, and
magnification range was 30~800,000.

3. Results and Discussion
3.1. Electrochemical Analysis

Figure 2 shows the Nyquist diagram of the steel sample in the cement paste specimen
at 28 and 90 days. At 28 days, the capacitive arc in the low-frequency region is close to
a straight line, and the steel sample is passivated. The transfer resistance of the double
electric layer on the steel sample surface is very large, and the corresponding equivalent
circuit diagram is shown in Figure 3a. At 28 days, the impedance of the control group is
significantly lower than that of the group mixed with the rust inhibitor, indicating that the
rust inhibitor effectively inhibits the corrosion of the steel sample. The impedance is the
largest under the combined action of Na2MoO4 and BTA. At 90 days, a straight line with a
slope close to 45◦ appears in the low-frequency region. The equivalent circuit diagram is
shown in Figure 3b, and the impedance W related to diffusion appears. The electrochemical
system is controlled by diffusion. The radian of the capacitive arc in the low-frequency
region of each group becomes large, and the radius becomes small. It shows that the steel
sample has the trend of corrosion. The impedance of the control group is higher than that
of the group mixed with the rust inhibitor. This is because more rust is formed on the steel
sample surface, and the resistance of the rust is higher than that of iron, so the impedance
is significantly improved. The impedance and capacitive arc radius of the composite rust
inhibitors are significantly larger than that of the single rust inhibitors. Additionally, under
the combined action of Na2MoO4 and BTA, the impedance and the radius of capacitive arc
are the largest. It shows that the inhibition efficiency is the highest, and the rust resistance
effect is the best when Na2MoO4 and BTA are mixed together.
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3.2. XPS Analysis of the Passive Film on the Steel Sample
3.2.1. XPS Scanning Full Spectrum Analysis of the Passive Film

Figure 4 shows the full scan XPS spectrum of the passive film on the steel sample
surface. It can be seen from Figure 4 that the passive film mainly contains Fe, O, Ca, C,
Cl, and Na elements. The elements of Ca, Cl, and Na come from Ca(OH)2, NaCl, NaOH,
and NaHCO3 added during the solution preparation. XPS detects the C element, and
the diffraction peak of the C is powerful. On the one hand, it is because the steel sample
contains C. On the other hand, since the C element [28] does not exist in the solution, it may
come from pollutants. The diffraction peaks of O and Fe are very strong, indicating that
the passive film is mainly composed of iron oxide [29]. In addition, the components in the
rust inhibitor also participated in the formation of the passive film. The passive film of the
group mixed with Na2CrO4 contains compounds related to the Cr element. Additionally,
the groups mixed with Na2CrO4 contain compounds related to the Mo element. In the
groups containing BTA, the N peak is obviously raised after adding BTA, illustrating that
the passive film contains some compounds related to the N element. The N element could
only come from BTA. Additionally, the diffraction peaks of Cr, Mo, and N are powerful.
By observing the binding energy of Fe 2p in Figure 4, it can be observed that the binding
energy of Fe 2p changed with different rust inhibitors. This phenomenon shows that the
iron oxide in the passive film has a difference in composition under the action of different
rust inhibitors.

3.2.2. Analysis of the XPS Peak Fitting Spectrum of Fe

The whole XPS spectra were processed using the CasaXPS software. Combined with
the relevant literature [30] and the NIST XPS database, the XPS spectrum of the Fe element
in the passive film was obtained, as shown in Figure 5. The main components of the passive
film containing the Fe element in each group are composed of Fe3O4, FeOOH, and Fe2+.
Among them, Fe3O4 has the highest density and is insoluble in acid and alkali. In addition,
the Na2MoO4 and DMEA groups also possess Fe2O3. After fitting, the peak fitting data
of the Fe element are shown in Table 4. The FeOOH in the Na2CrO4 group occupies the
majority, and Fe3O4 with a higher density is significantly lower than that in the Na2MoO4
group. In the Na2MoO4 group, due to the existence of MoO4

2− and the instability of FeCl2,
the two react to generate insoluble and stable FeMoO4 [31]. The molybdate inhibits the
dissolution of steels, thereby preventing corrosion [32]. Its formation process is shown in
Equations (2) and (3):

Fe→ Fe2+ + 2e− (2)

Fe2+ + MoO2−
4 → FeMoO4 (3)
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group. 

3.2.2. Analysis of the XPS Peak Fitting Spectrum of Fe 

The whole XPS spectra were processed using the CasaXPS software. Combined with 

the relevant literature [30] and the NIST XPS database, the XPS spectrum of the Fe element 

in the passive film was obtained, as shown in Figure 5. The main components of the 

passive film containing the Fe element in each group are composed of Fe3O4, FeOOH, and 

Fe2+. Among them, Fe3O4 has the highest density and is insoluble in acid and alkali. In 

Figure 4. XPS full scan of the steel sample passive film in the different groups. (a) Na2CrO4 group.
(b) Na2MoO4 group. (c) BTA group. (d) DMEA group. (e) Na2CrO4 + BTA group. (f) Na2MoO4 + BTA
group.
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Figure 5. XPS peak spectrum of the Fe element in the passive film under the action of differ-
ent rust inhibitors. (a) Na2CrO4 group. (b) Na2MoO4 group. (c) BTA group. (d) DMEA group.
(e) Na2CrO4 + BTA group. (f) Na2MoO4 + BTA group.
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Table 4. Fitting data of the Fe element in different groups.

Rust Inhibitor Component Fe 2p Energy Level Binding Energy/mV Peak Area Relative Content/%

SNa2CrO4

FeO

Fe 2p3/2 709.4 1048.8

30.17
Fe 2p1/2 723 524.4
Fe 2p3/2 715.4 262.2
Fe 2p1/2 729 131.1

Fe3O4
Fe 2p3/2 708.3 208.7

4.8Fe 2p1/2 721.9 104.4

FeOOH

Fe 2p3/2 711.15 2259.2

65.03
Fe 2p1/2 724.75 1129.6
Fe 2p3/2 719.15 564.8
Fe 2p1/2 732.75 282.4

Na2MoO4

FeO

Fe 2p3/2 709.5 740.9

29.99
Fe 2p1/2 723.1 370.5
Fe 2p3/2 715.5 185.2
Fe 2p1/2 729.1 92.6

Fe3O4
Fe 2p3/2 708.3 314.3

10.17Fe 2p1/2 721.9 157.2

FeOOH

Fe 2p3/2 711.6 987.8

39.96
Fe 2p1/2 725.2 493.9
Fe 2p3/2 719.6 246.9
Fe 2p1/2 733.2 123.5

Fe2O3

Fe 2p3/2 710.6 291.2

11.77
Fe 2p1/2 724.2 145.6
Fe 2p3/2 718.6 72.8
Fe 2p1/2 732.2 36.4

Fe2+

Fe 2p3/2 709.1 740.9

8.11
Fe 2p1/2 722.7 370.5
Fe 2p3/2 715.1 185.2
Fe 2p1/2 728.7 92.6

BTA

FeO

Fe 2p3/2 709.4 630

25.06
Fe 2p1/2 723 315
Fe 2p3/2 715.4 157.5
Fe 2p1/2 729 78.75

Fe3O4
Fe 2p3/2 711.1 450

14.33Fe 2p1/2 724.7 225

FeOOH

Fe 2p3/2 711.6 1523.1

60.7
Fe 2p1/2 725.2 761.5
Fe 2p3/2 719.6 380.8
Fe 2p1/2 733.2 190.4

DMEA

FeO

Fe 2p3/2 709.5 245

9.81
Fe 2p1/2 723.1 122.5
Fe 2p3/2 715.5 61.2
Fe 2p1/2 729.1 30.6

Fe3O4
Fe 2p3/2 708.3 200.2

6.41Fe 2p1/2 721.9 100.1

FeOOH

Fe 2p3/2 710.7 1747.2

73.76
Fe 2p1/2 724.3 873.6
Fe 2p3/2 718.7 436.8
Fe 2p1/2 730.3 218.4

Fe2O3

Fe 2p3/2 710.6 250

10.02
Fe 2p1/2 724.2 125
Fe 2p3/2 718.6 62.5
Fe 2p1/2 730.2 31.25
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Table 4. Cont.

Rust Inhibitor Component Fe 2p Energy Level Binding Energy/mV Peak Area Relative Content/%

Na2CrO4
+ BTA

FeO

Fe 2p3/2 709.3 1540.2

26.61
Fe 2p1/2 722.9 770.1
Fe 2p3/2 715.3 385.1
Fe 2p1/2 728.9 192.5

Fe3O4
Fe 2p3/2 710.9 642.5

9.98Fe 2p1/2 724.5 321.2

FeOOH

Fe 2p3/2 711.6 3671.1

63.41
Fe 2p1/2 725.2 1835.6
Fe 2p3/2 719.6 917.8
Fe 2p1/2 733.2 458.9

Na2MoO4
+ BTA

FeO

Fe 2p3/2 709.39 319

5.98
Fe 2p1/2 722.99 159.9
Fe 2p3/2 715.39 80
Fe 2p1/2 728.99 40

Fe3O4

Fe 2p3/2 711.11 2582.9

48.29
Fe 2p1/2 724.71 1291.4
Fe 2p3/2 719.11 645.7
Fe 2p1/2 732.71 322.9

FeOOH

Fe 2p3/2 710 2047.1

38.26
Fe 2p1/2 723.6 1023.5
Fe 2p3/2 718 511.8
Fe 2p1/2 731.6 255.9

Fe2+

Fe 2p3/2 709.5 400

7.48
Fe 2p1/2 723.1 200
Fe 2p3/2 715.5 100
Fe 2p1/2 729.1 50

In the groups containing BTA, compared with the anodic rust inhibitor, the content
of FeOOH changes little, but the content of Fe3O4 increases, while the content of FeO
decreases. The incorporation of BTA further oxidizes FeO into Fe3O4 and improves the
resistance of the passive film to chloride ions. In the DMEA group, the content of FeO and
Fe3O4 with a higher density is less, and Fe2O3 with loose and porous is generated. This
indicates that the compactness of the passive film is not ideal under the action of DMEA,
which is lower than that of BTA. Comparing the percentage of each component in each
group, the content of Fe3O4 under the combined action of Na2MoO4 and BTA is 48.29%,
which is much larger than that in other groups. Additionally, the formation of FeMoO4
further prevented corrosion. The mechanism of steel bar corrosion is electrochemical
reaction. This process is completed by electron transfer between the anode and cathode.
An anodic rust inhibitor can slow down the progress of steel bar corrosion by inhibiting the
loss of electrons in the iron matrix in the anode area or slowing down its loss of electrons.
However, local corrosion or accelerated corrosion may be caused during use. A cathode
rust inhibitor can, by physical and chemical adsorption on the passive film, slow down
the ability of the electrochemical cathode to gain electrons, thereby enhancing corrosion
resistance. Under the combined action of Na2MoO4 and BTA, the characteristics of anodic
and cathodic rust inhibitors are combined. It inhibits the dissolution of the anode and
provides a protective barrier for the cathode. It follows that the passive film is the densest
in the Na2MoO4 + BTA group, and the inhibition efficiency is the highest.

3.2.3. Analysis of the XPS Peak Fitting Spectrum of the N Element

Figure 6 is the XPS spectrum of the N element of the passive film on the steel sample
surface. After the peak fitting and comparing the N1s energy table, it can be seen that the
N1s peaks correspond to the N–Fe and -NH- bonds, and the binding energy is 400.8 eV and
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399.1 eV [33]. The peak fitting data of the N element are shown in Table 5. The type of rust
inhibitor affects the content of the N–Fe and -NH- bonds. Only the groups containing BTA
contain N–Fe and -NH- bonds. The above shows that the N–Fe bond is formed between
BTA and steel sample. BTA attaches to the steel sample surface through this bond to form
a dense adsorption film, which becomes a part of the passive film [34]. At the same time,
BTA itself also combines with the steel sample. Because the coordination bonds between
the hydrogen and nitrogen atoms are unstable in BTA, the lone electron pair existing in the
N element is coordinated with d vacant orbital in Fe [35]. Since Fe is usually 6-coordinated,
the chemical formula of this substance is C36H24FeN18, which is wrapped on the steel
sample surface in the form of an adsorption film to improve the compactness of the passive
film. The chemical structure of C36H24FeN18 is shown in Figure 7.
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Table 5. Fitting data of N element in different test groups.

Rust Inhibitor Component N 1s Energy Level Binding Energy/mV Peak Area Relative Content/%

BTA
N–Fe N 1s 400.79 335.5 38.58
-NH- N 1s 399.09 534.3 61.42

Na2CrO4 + BTA N–Fe N 1s 400.82 388.7 78.74
-NH- N 1s 399.11 105 21.26

Na2MoO4 + BTA N–Fe N 1s 400.79 323 77.15
-NH- N 1s 399.11 95.7 22.85

3.2.4. Analysis of the XPS Peak Fitting Spectrum of the Cr Element

Figure 8 is the XPS spectrum of the Cr element of the passive film on the steel sample
surface. Comparing the energy level spectrum of Cr 2p in the NIST database, the composi-
tion of Cr in the passive film is mainly CrO3 and Cr2O3. After fitting, the peak fitting data
of the Cr element are shown in Table 6. Compared with the single rust inhibitor, the passive
film containing the Fe element is still mainly FeOOH when mixed with the composite rust
inhibitor. However, the content of the substances corresponding to the Cr and N elements
has changed dramatically. On the one hand, the content of Cr2O3 increases from 45.38%
of the single rust inhibitor to 80.41% of the composite rust inhibitor. On the other hand,
the N–Fe bond increases from 38.58% to 78.74%. The density of Cr2O3 is higher than that
of CrO3, and it is more stable [36]. The chemical reaction formula of Cr2O3 is as follows
(4) and (5):

3Fe + 2Na2CrO4 + 2NaOH→ 3Na2FeO2 + Cr2O3 ↓ +H2O (4)

6Na2FeO2 + 2Na2CrO4 + 5H2O→ 3(NaFeO2)2 + Cr2O3 ↓ +10NaOH (5)
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Figure 8. XPS peak spectrum of the Cr element in the passive film under the action of different rust
inhibitors. (a) Na2CrO4 group. (b) Na2CrO4 + BTA group.

The increase in Cr2O3’s content optimizes the compactness of the passive film. It can
be seen from Section 3.2.3 that the increase in the content of the N–Fe bond can promote
more BTA to be adsorbed on the steel sample surface and contribute to the formation of
the BTA adsorption film. The above explanation indicates that, under the interaction of
Na2CrO4 and BTA, the passive film is denser than that of the single rust inhibitor. The
composite action of Na2CrO4 and BTA can effectively prevent the corrosion of the steel
sample, and the inhibition efficiency is effectively improved.
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Table 6. Fitting data of the Cr element in different groups.

Rust Inhibitor Component Cr 2p Energy Level Binding Energy/mV Peak Area Relative Content/%

Na2CrO4

CrO3
Cr 2p3/2 579.21 539.5

54.62Cr 2p1/2 589.13 269.7

Cr2O3
Cr 2p3/2 580.08 448.1

45.38Cr 2p1/2 590.97 224.1

Na2CrO4 + BTA

CrO3
Cr 2p3/2 578.31 217.3

19.59Cr 2p1/2 588.31 108.6

Cr2O3
Cr 2p3/2 576.51 892.1

80.41Cr 2p1/2 586.51 446

3.2.5. Analysis of the XPS Peak Fitting Spectrum of the Mo Element

Figure 9 is the XPS spectrum of the Mo element of the passive film on the steel sample
surface. Figure 9 shows that the peak curve of Mo 3d consists of FeMoO4 and MoO3. After
fitting, the peak fitting data of the element Mo are shown in Table 7. The peak binding
energy of FeMoO4 is 232.1 eV [37]. Compared with the single rust inhibitor, the passivation
substances content of each element changed dramatically under the combined action of
Na2MoO4 and BTA. For the Fe element, the content of Fe3O4 increases to 48.29%, while
FeOOH decreases to 38.26%. For the Mo element, FeMoO4 increases from 66.7% to 71.29%.
In addition, the N–Fe bond also increases, because the ion–dipole interaction is generated
after MoO4

2− is adsorbed on the steel sample. Additionally, the ion–dipole interaction
can promote more BTA to be adsorbed on the steel sample surface [38]. Additionally,
this process is conducive to the formation of an adsorption film. It indicates that, under
the interaction of Na2MoO4 and BTA, although the oxide content of Mo decreases, the
adsorption capacity of BTA is improved with the formation of FeMoO4. At the same time,
the passivation of iron is denser too. Compared with the interaction of Na2CrO4 and BTA,
the passive film is more complete and denser. The rust resistance effect is the best in the
Na2MoO4 + BTA group.
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3.3. XRD Analysis of the Sample Passive Film

Figure 10 shows the electron microscope at 10 K magnification image and XRD pattern
of the passive film on the steel sample surface. It can be seen from Figure 10 that Fe oxides
are present in obvious diffraction peaks in each group. Additionally, the main component
of the passive film on the steel sample surface is Fe oxides. In addition, the Na2CrO4 group
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detects a mixture of CrO3 and Fe0.5Cr0.5. The existence of iron shows that the passive film
does not completely wrap the steel sample. At the same time, some cracks can be found in
the passive film from the SEM. It shows that the inhibition efficiency of Na2CrO4 is low.
The group of Na2MoO4 detects FeMoO4 and MoO3 and does not detect Fe element. This
indicates that a complete passive film was formed and the steel sample is in the state of
complete passivation. The surface of passive film is relatively smooth. Additionally, it also
verifies that the rust resistance of Na2MoO4 is stronger than that of Na2CrO4 [30]. The
diffraction peaks of Fe in the groups mixed with BTA are mainly Fe3O4 and FeOOH, and
the content of Fe3O4 is higher than that of the anodic rust inhibitor. Since XRD is mainly
used to determine the crystal structure of inorganic compounds, the determination of BTA
adsorption film substances is mainly based on XPS results. Cr2O3 and CrO1.01 are detected
in the group mixed with Na2CrO4 and BTA. The Mo compounds in the group mixed with
Na2MoO4 and BTA include MoO3 and FeMoO4, and there is no Fe element. This indicates
that the composition of the passive film is relatively dense when Na2MoO4 and BTA are
mixed. The XRD scanning results are consistent with the XPS analysis. In addition, from
the SEM figure, it can be observed that the passive film in the DMEA group has a long crack,
and the chloride ion erosion has caused a certain damage to the passive film structure. After
comparison, the DMEA has the worst inhibition efficiency. Under the combined action of
the rust inhibitor, the passive film contains granular substances and presents a multi-level
structure, indicating that, in addition to the iron compound, there is also a BTA adsorption
film. The structure of passive film is denser than that of single rust inhibitors. However,
compared with the composite Na2CrO4 and BTA group, the composite Na2MoO4 and BTA
group embeds some massive materials on the steel sample surface. Combined with XRD,
they are inferred to be FeMoO4. When mixed with Na2MoO4 and BTA, the passive film is
smoother, the hierarchical structure is better, and the inhibition efficiency is the highest.
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Figure 10. XRD patterns and micromorphology of the passive film on the steel sample surface under
the action of different rust inhibitors. (a) Na2CrO4 group. (b) Na2MoO4 group. (c) BTA group.
(d) DMEA group. (e) Na2CrO4 + BTA group. (f) Na2MoO4 + BTA group.
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Table 7. Fitting data of the Mo element in different groups.

Rust Inhibitor Component Mo 3d Energy Level Binding Energy/mV Peak Area Relative Content/%

Na2MoO4

FeMoO4
Mo 3d5/2 232.1 233.5

66.67Mo 3d3/2 235.3 155.8

MoO3
Mo 3d5/2 232.92 116.8

33.33Mo 3d3/2 236.12 77.9

Na2MoO4 + BTA

FeMoO4
Mo 3d5/2 232.09 157.6

71.29Mo 3d3/2 235.29 78.8

MoO3
Mo 3d5/2 232.39 63.5

28.71Mo 3d3/2 235.59 31.7

3.4. Inhibition Efficiency of the Rust Inhibitor

The inhibition efficiency can clearly reflect the rust resistance of rust inhibitors. Table 8
shows the inhibition efficiency of different types of rust inhibitors. It can be seen that the
rust resistance of composite rust inhibitors is better than that of single rust inhibitors [22].
The composite rust inhibitor inhibits the dissolution of the anode and provides a protective
barrier for the cathode. It could not cause the pitting corrosion of the steel bar. The inhibition
efficiency of Na2MoO4 and BTA is the best. Additionally, DMEA has the lowest inhibition
efficiency. This is because DMEA is liquid, and the test process cannot fully ensure the uniform
distribution of liquid on the steel sample. This reason may lead to an uneven concentration
distribution around the steel sample and reduce the rust resistance of the film formed by
physical and chemical action. According to the inhibition efficiency, the rust resistance effect:
Na2MoO4 + BTA > Na2CrO4 + BTA > BTA > Na2MoO4 > Na2CrO4 > DMEA.

Table 8. Inhibition efficiency of the rust inhibitor.

Rust Inhibitor Na2CrO4 Na2MoO4 BTA DMEA Na2CrO4 +
BTA

Na2MoO4 +
BTA

IE% 93.47 94.20 94.36 93.07 95.89 96.62

4. Conclusions

The effects of different types of rust inhibitors on the microstructure characteristics of
the passive film on the steel bar surface and the inhibition efficiency of the steel bar in a
simulated chloride concrete pore solution were investigated. The rust inhibitor participated
in the formation of a passive film and effectively delayed the occurrence of steel bar corrosion.
The passive film was primarily composed of iron compounds, but it also contained an oxide
film and an adsorption film formed on the surface of the steel bar by the rust inhibitor.
The rust resistance effect of composite rust inhibitors was better than that of single rust
inhibitors. The passive film mixed with Na2MoO4 and BTA together had the highest com-
pactness, largest impedance, and highest inhibition efficiency. The rust resistance effect was:
Na2MoO4 + BTA > Na2CrO4 + BTA > BTA > Na2MoO4 > Na2CrO4 > DMEA.
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