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Abstract: Intumescent coatings (ICs) are often used for protecting steel buildings during a fire when
the structural, aesthetic, and architectural features of the structural members should be preserved.
Indeed, ICs form a thin protective layer on the steel surface, that if exposed to fire or elevated
temperatures, expands in volume with a consequent reduction in density. Hence, the protective
layer captivates heat and protects the structural member from damage or elevated deformation. This
reactive fire protection is designed using prescriptive tables, in which the IC thickness is chosen
according to the required fire resistance, critical temperature, and section factor of the steel element.
These tables are elaborated on the basis of the tests results according to the UNI EN 13381-8 standard,
which is the reference for characterizing reactive systems such as ICs. For its reactive nature, this fire
protection has to be applied to the structure in a controlled manner, and it is good practice to verify
its correct application by measuring thickness and adhesion in situ through regulated methods. The
qualification process of IC systems in Italy can be realized through a voluntary certification within the
scope of a European technical assessment or by means of a national technical assessment certificate
that is mandatory. All these aspects related to qualification, assessment, and design of ICs are often
ignored by both designers and manufacturers, especially in Italy. Therefore, this paper describes all
the approaches, introducing the main technical differences, in order to provide a sort of guideline on
the use of these reactive fire protections.

Keywords: fire resistance; certification; intumescent coating; steel structures

1. Introduction

In the current Italian regulatory framework, when a steel structure is designed, a given
fire resistance is often required, but generally due to the low fire performance of steel,
this requirement cannot be satisfied. An increase in the fire resistance duration for steel
structures can be reached by applying fire protection materials, preventing the achievement
of high temperatures in steel members during fire [1]. These protection materials can be
divided into two categories: passive materials (e.g., incombustible boards) and reactive
materials (e.g., intumescent coatings). Intumescent coating (IC) is reactive because it swells
as a result of heat exposure, increasing many times its original thickness and decreasing in
density, producing a carbonaceous char formed by a large number of small bubbles that act
as an insulating layer to protect the substrate.

The advantages of this protection system include reduced invasiveness compared to
other materials, an easy application, and a good surface finishing. Indeed, the rapid growth
in the use of ICs in the built environment is associated with the low impact in the attractive
architectural appearance of bare steel structures, along with their light weight and their
flexibility for both on- and off-site applications [2]. Thin film intumescent coatings (ICs)
are solvent- or water-based systems applied with a dry thickness ranging between 400 and
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3000 µm, and they are typically used for general construction including structural steel
with an ISO834 fire curve. In contrast, thick film coatings tend to find use in the oil and
gas industry, such as for protecting petroleum refineries, considering the hydrocarbon fire
curve [3]. These ICs can be used not only for fire protection of steel but also for wood or
concrete structures. In the case of wood, novel methods for calcium carbonate deposition
in wood that increases carbon dioxide concentration and fire resistance are also proposed
in the literature [4]. For concrete, especially if a geopolymer one is considered, several
coating types can be considered in order to increase its fire resistance [5]. While, for steel, IC
remains one of the best ways to prevent high temperatures in the structures, during fires.

According to the Italian design code NTC2018 [6], all materials and products employed
for structural use shall comply with a qualification process that can be pursued according
to three alternative cases.

In case A, the performance assessment of the material/product is regulated by a
specific harmonized European standard (hEN) published in the Official Journal of European
Union (OJEU). Manufacturers are obliged to mark CE on their products if covered by hENs
and to report the relative essential characteristics in the Declaration of Performance (DoP),
according to the European construction product regulation (CPR) no. 305/2011 [7]. In case
B, due to the absence of such harmonized regulations, the qualification process is controlled
by the NTC2018 code itself. This is, for instance, the case of reinforced concrete. Finally,
case C refers to all materials and products not belonging to cases A or B, comprehending
the most innovative and new solutions.

In this case, the manufacturer shall achieve the CE labeling of the product on the
basis of a European Technical Assessment (ETA) or shall obtain a technical assessment
certificate. The ETA can be released by a specific body called TAB (i.e., Technical Assessment
Body), designated by a Member State and part of the European Organization of Technical
Assessment (EOTA). The ETA is a document providing the product performances assessed
according to methods and criteria described in a European Assessment Document (EAD),
that is a specific product standard. Once the ETA is released, the manufacturer can produce
the Declaration of Performance and obtain a voluntary certification that allows the free
trade of the product on the European market.

Alternatively, the manufacturer of a product belonging to case C can opt for obtaining
a national technical assessment certificate, released by the President of the Superior Council
of Public Works on the basis of guidelines produced by the Central Technical Service,
eventually in agreement with the National Fire and Rescue Service for those products
requiring the assessment of the resistance to fire.

Performance of the assessment of IC systems is not covered by any harmonized
standard, and there are no indications in the NTC2018 design code. Thus, the qualification
process of such product complies with case C described above. In order to obtain a national
technical assessment certificate concerning the IC resistance to fire, EN 13381-8:2013 [8]
shall be exclusively adopted for reactive materials according to indications by the National
Fire and Rescue Service [9].

On the basis of test results according to EN 13381-8:2013, it is possible to relate the
fire resistance period, section factor, and the thickness of the fire protection material to
maintain the steel’s temperature below the design temperature. These data are input
into the design process of ICs for the protection of steel structures. Alternatively, the
manufacturer can undertake a voluntary certification process with a TAB in order to get an
ETA on the basis of EAD 350402-00-1106 [10], which comes from the conversion of ETAG
018 part 2 [11], and specifically concerns the performance assessment of reactive coatings
for fire protection of steel elements. However, there is still a lack of a harmonized reference
that provide manufacturers, designers, and contractors with recommendations for testing,
design, installation, and control.

The aim of the paper was to give an overview of the various approaches in terms
of assessment and certification of the IC and to design the fire resistance of protected
steel structures, highlighting the various aspects that characterize national and European
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procedures, after introducing a technical description of the IC system and its functioning.
Indeed, the complicated industrial and low requirements for the use of these products
for the fire-protected steels in practice is commonly not well known. Thus, the work is
intended as a guidance concerning certification procedures required in Italy in relation
to the EU norms and regulations. A general outlook of the required tests and procedures
is presented.

2. IC Technical Solution

ICs are always part of a system including an anticorrosive primer and, generally, a
topcoat are used for steel structures. The primer ensures adhesion to the substrate in the
normal state, anticorrosion protection, and stickability of the intumescent char formed
during fire exposure, while the topcoat has both aesthetic function, and it is used to promote
weathering resistance in end-use conditions (see Figure 1).
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As also described before, this reactive protection, by swelling and forming a large
number of small bubbles, acts as an insulating layer, with very small thermal conductivity,
to protect the steel substrate from the high temperatures generated by the fire (see Figure 2).
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Figure 2. Fire behavior of ICs.

The behavior of ICs subjected to elevated temperatures has been largely investigated
in recent studies, especially from the chemical point of view. It is well known that the
intumescent process is a complex chemistry including the organic (coating) binder resin
and an acid catalyst like the ammonium polyphosphate, which decomposes to yield a
mineral acid. This acid reacts with a carbonific source, such as pentaerythritol, to produce
a carbon char. The melanine, which is a foam-producing agent, reacts with the acid source
and decays, changing into an inert gas that then expands the char. This is the description
of the main reactions that basically take place, although more complex interactions occur
too. For example, filler particles are incorporated into the formulation to act as nucleating
sites or “bubble growth” locations and the resin binder theatres a large part in softening
and charring [12]. This chemical transformation affects the thermal properties of ICs [13].
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Andersen [14] proposed the development of thermal resistance over time divided into
four general phases, which were also confirmed and identified by de Silva et al. in [15],
investigating the thermal conductivity and swelling of ICs (Figure 3).
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Figure 3. Common trends in the thermal equivalent conductivity and IC swelling and definition of
the four general phases in their development.

The phases of IC behavior reported in Figure 3 are briefly described in the following.
1. Inert phase
Before reaching its reaction temperature, the dry IC is inert to the temperature and

the thickness is equal to the initial one. During this phase, the IC is gradually melting and
increasing its viscosity significantly. The thermal resistance provided to the steel is minimal
and the measured protected temperature is similar to the unprotected one.

2. Transient phase
During the transient phase, the IC starts to swell and quickly increases in volume.

When all the virgin material is consumed and the blowing agent is exhausted, a multicellular
black char structure forms the IC. Generally, at this moment, the minimum thermal IC
conductivity within the transient phase and the intumescent char is considered fully
developed (see Figure 3). Furthermore, at this point, the char assembly is characterized by
a black color due to the high carbon binder quantity. Later, the increase in the thermal IC’s
conductivity is related to the gradual consumption of the carbon binder, which is the main
component creating the char structure.

3. Steady phase
The endothermic reaction finishes when all the combustible materials burned and

the IC pass in the steady phase. At this stage, only the white expanded char structure
contributes to the thermal conductivity, keeping it to a constant value or sometimes it
slightly increases.

4. Post-austenitization phase
For temperatures greater than 700 ◦C, after reaching the austenitization point, the IC

char structure looks like a fragile and inconsistent material, characterized by a light white
color. At this point, the carbon binder is all burned, and with that the char structure is
degraded, losing its cohesion. During the post-austenitization phase and at high tempera-
tures, the char structure starts to crack. The thermal IC conductivity increases by a steady
value with a consequent increment in the steel temperature. The cracks act as thermal
channels, and the char structure stops providing good insulation to the steel surface.
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3. Qualification Process

The qualification process of ICs in Italy can follow a national or a European approach.
In the first case, fire resistance shall be tested according to UNI EN 13381-8 [8], which
contains a series of fire tests on steel elements protected with the IC that has to be qualified.
In order to ensure free trade in the European market, the qualification process is regulated
by EAD 350402-00-1106 [10] in the context of voluntary certification. Key points of both
procedures are addressed in the following section in order to provide an overview of the
main differences.

3.1. National Qualification Process

The UNI EN 13381-8 specifies a test method for determining the contribution of
applied fire protection systems to structural steel members. This evaluation was designed
to cover a range of thicknesses of ICs, a range of steel sections characterized by their section
factors Am/V (which is the ration between the element surface exposed to fire Am and
its total volume V), a range of design temperatures, and a range of valid fire protection
classification periods. In particular, several steel elements have to be tested: unloaded
tall columns and short columns, unloaded and loaded beams, and varying the section
factors and the IC thickness. Generally, the beams are mounted to the ceiling of the furnace
and the ends of the beams are protected in accordance with EN 13381-8:2013, and these
beams are heated from three sides. The standard furnace is generally 4 m long and 3 m
wide, equipped with several burners and controlled by a programmable logic controller to
simulate different fire curves. Figure 4 shows an example of an arrangement in a furnace of
fire tests conducted according to EN 13381-8:2013, in which the IC thickness varies between
1500 and 2500 µm.

Coatings 2022, 12, x FOR PEER REVIEW 6 of 18 
 

 

 
Figure 4. Typical disposition of specimens for a fire test according to EN 13381-8. 

 
Figure 5. Fire curves. 

0

200

400

600

800

1000

1200

0 15 30 45 60 75 90 105 120

Hydrocarbon fire curve
ISO 834 fire curve
Smouldering fire curve

θ [°C]

t [min]

θ (°C)

t (min)

Figure 4. Typical disposition of specimens for a fire test according to EN 13381-8.

This European Standard contains the fire test procedures that specify the tests that
should be carried out to determine the efficiency of the fire protection system to remain
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attached to the steelwork and to provide data on the thermal properties of the fire protection
system when exposed to the standard temperature/time curve specified in EN 1363-1 [16].
In some cases, the code require tests in furnaces under a slow heating curve in order to
evaluate whether the performances of the ICs are affected by fire curves (Figure 5) with
low thermal gradients (e.g., smoldering fire) [17]. If the ICs are used to protect structures in
which the potential fire is similar to a hydrocarbon one, the standard curve appropriate to
this fire has to be used.
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In addition, current methods for testing and approving ICs for commercial use impli-
cate the coating in a full-scale beam and column using a standard process in a furnace. This
procedure must be repeated, even if the manufacturer has only made a minor change to the
chemical formulation.

The fire test methodology makes provisions for the collection of data, which can be
used as direct input into the calculation of the fire resistance of the steel structural members
in accordance with the procedures given in EN 1993-1-2 [18] and EN 1994-1-2 [19]. This
European Standard also contains the assessment, which prescribes how the analysis of the
test data should be made and gives guidance on the procedures by which interpolation
should be undertaken.

The assessment is performed in two main steps: first is the physical presentation,
which is generally determined by evaluating the difference in temperature data between
loaded and unloaded elements and checking if there is a negative influence from the
application of a load. From this assessment, a temperature-dependent correction factor is
calculated, which is applied to all the unloaded columns involved in the test set. These
unloaded columns are in accordance with the standard tests included in the thermal
performance evaluation.

The results of these tests and the assessment obtained according to this standard are
directly applicable to steel sections of I and H cross-sectional shapes and hollow sections
(see Figure 6).
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The second step is the elaboration of the test data for the drafting of prescriptive tables
useful for the design of the IC thickness as a function of required fire resistance, critical
temperature, and section factor of the steel element (see Table 1). The critical temperature
ranges between 500 and 600 ◦C and is the one at which the steel element loses its load-
bearing capacity at a specific load; the higher the critical temperature, the lower the fire
protection required by the structure.

Table 1. Typical table for the prescriptive design of IC thickness.

Fire Resistance Classification

Critical temperature (◦C) 350 400 450 500 550 600 650

Section factor A/V (m−1) Thickness of IC (µm)

70 600 400 400 400 400 400 400

75 600 400 400 400 400 400 400

80 600 400 400 400 400 400 400

85 600 400 400 400 400 400 400

90 600 400 400 400 400 400 400

95 750 400 400 400 400 400 400

100 750 400 400 400 400 400 400

105 750 400 400 400 400 400 400

This assessment prescriptive method treats ICs as chemically nonreactive materi-
als, and it implicitly assumes that thermal properties only depend on the temperature,
representing, in some cases, a limitation of IC use in design and verification methods.
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3.2. European Qualification Process

The European qualification of reactive coating for fire protection of steel elements is
regulated by the EAD 350402-00-1106 [10], published in the OJEU in 2017. This standard
covers the reacting coating only or the reactive coating kit, composed of the primer for
corrosion protection or as a bonding agent, the reactive component, and the topcoat (see
Figure 1). The assessment methods included in the EAD refers to the fire protective
coating element/kit with an intended working life from a minimum of 10 years up to
25 years. The product performances can be expressed through the assessment of the
essential characteristics provided in Table 2.

Table 2. Essential characteristics and relative assessment methods for reactive coating systems
according to EAD 350402-00-1106.

No. Essential
Characteristic Assessment Method

Basic Work Requirement 2: Safety in case of fire
1 Reaction to fire Test methods and classification according to EN 13501-1 [20]
2 Resistance to fire Test methods and classification according to EN 13501-2 [21]

Basic Work Requirement 3: Hygiene, health, and the environment

3 Content, emission, and/or release
of dangerous substances SVOCs and VOCs according to EN 16516

Basic Work Requirement 4: Safety and accessibility in use
4 Adhesion Insulating efficiency tests according to EN 1363-1
5 Durability Insulating efficiency tests on initial and exposed specimens according to EN 1363-1

Reaction to fire tests can be performed according to EN 13823 [22] or EN 11925-2 [23],
applying the largest possible quantity of reactive fire protection on a steel surface with a
thickness of at least 2 mm. The result of the tests applies to all reactive coating systems with
application quantities smaller than or equal to the application quantity tested according
to [22], including all primers and topcoats.

Fire resistance is assessed by means of the test method described in EN 13381-8 [5].
Because a reactive coating system does not possess fire resistance on its own, the classifica-
tion applies to the protected element, including the reactive coating system, and not to the
protection itself.

The performance of the product in terms of content, emission, and/or release of
dangerous substances needs to be assessed on the basis of the intended release scenario
that can be:

• IA1: Product with direct contact to indoor air;
• IA2: Product with indirect contact to indoor air but possible impact on indoor air;
• S/W2: Product with indirect contact soil, ground, and surface water.

Semi-volatile organic compounds (SVOCs) and volatile organic compounds (VOCs)
should be determined in accordance with EN 16516 [24].

The durability of the fire protective coating system is assessed with respect to service
conditions, such as humidity, variations in temperature and relative humidity, rain and
radiation of the sun, and chemical attacks. The durability assessment is achieved by means
of indirect testing, i.e., through the measurement and comparison of insulating efficiency
in initial (virgin) and exposed (to several conditioning) specimens. Insulating efficiency
tests are performed according to a small-scale furnace fire test under the conditions of the
standard time–temperature curve as defined in EN 1363-1 [16]. Specimens can be panels or
I-section short columns. Fire tests finish when the specimen’s mean temperature reaches
500 ◦C. When the mean time to achieve the critical steel temperature t500 on exposed
specimens is not less than 85% of the time t500 registered on virgin specimens, the durability
is deemed to be met.



Coatings 2022, 12, 696 9 of 17

In order to ensure the required fire protective performance, adhesion of the reactive
coating system to its substrate is fundamental. Adhesion is covered by testing the insulating
efficiency as previously introduced.

4. Design and Control of the Application: Overview of Available Codes
4.1. Design and Verification Methods with a Prescriptive-Based Approach

According to current regulations, the fire resistance of steel structures protected with
intumescent coating is based on the standard fire resistance test, described before (EN
13381-8). Based on these results, tables that list the minimum dry film thickness (DFT) of
the product required for achieving a certain fire resistance in terms of time are provided.
In this way, the structural fire engineer can design or assess the fire resistance of the steel
element protected with IC in a very simple way. In Figure 7, the main steps are described.
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The Annex E of EN13381-8 describes another method to assess and design the fire
resistance of steel structures protected with IC by using the effective thermal conductivity.
This empirically informed procedure is called the “variable λ method”. It derives from an
energy balance taken during a given time interval during heating for unidirectional heat
flux conditions. This method is intended for evaluating the equivalent thermal conductivity
of fire protection systems and is defined by the following expression:

λIC = dIC × V
Ap

× ca × ρa ×
1

(θt − θa,t)× ∆t
× ∆θa,t (1)

where:

dIC = dry film thickness of reactive product, in meters;
V/Ap = inverse of the steel section factor, in meters;
ca = temperature-dependent specific heat capacity of steel at θa, in J/kgK;
ρa = density of the steel, in kg/m3;
θt = furnace temperature, in Celsius degrees;
θa,t = steel temperature, in Celsius degrees;
∆t = time step, in seconds;
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∆θa,t = steel temperature increase over time step ∆t, in Kelvin degrees.

Figure 8 shows the typical development of the IC thermal conductivity calculated both
with equation 1 and with simplified law, as suggested by de Silva et al. [25–27]. Starting
from a thermal conductivity very similar to the steel one (λs), the IC one reaches a minimum
value, and after it seems to stabilize. Knowing the thermal conductivity of the IC allows for
the assessment of the behaviour of the protected steel elements using both simplified and
advanced calculation methods. However, the effective thermal conductivity of IC is not
only temperature dependent. Indeed, as demonstrated by researchers [15,26,27], it can also
be dependent on the rate of heating, the steel section factor, the intumescent coating dry
film thickness, and nonuniform temperature distribution within the intumescent coatings.
These effects on the steel element temperature can be observed by analyzing Figure 9,
obtained from an experimental campaign presented in [15]. In particular, it can be observed
that when setting the section factor, the higher temperature was recorded in the sample
protected by the smaller IC thickness.
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Figure 9. The temperature evolution in steel samples.

4.2. Design and Verification Methods with a Performance-Based Approach

The new knowledge in the field of fire safety engineering (FSE) is directing the current
regulations towards performance-based design. The design flexibility of this approach can
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enable the consideration of a safe and economical solution for the design of eventual fire
protection for structures. Indeed, with this approach, natural fire curves are considered,
according with the intended use of each part of the structure, geometry, ventilation, and dis-
tribution of the fire loads, in order to obtain fire scenarios and fire curves as representative
as possible of the potential fire of the compartment (Figure 10).
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Figure 10. Natural fire curve compared with the ISO834 one.

As Figure 10 shows, natural fire curves can be very different from the ISO834 standard,
and these differences, especially in the growth phase of the fire, can influence the behaviour
of the reactive protections, such as the intumescent coatings, as demonstrated by numerous
researchers [15,28]. This strongly indicates that it is not applicable to extrapolate the value
of thermal properties, such as the thermal conductivity of IC obtained in accordance with
the fire exposure condition in the current assessment method [EN 13381-8], to applications
under different fire exposures. Since it is impossible to assess fire-resistance ratings for
intumescent-coating-protected structural steel with an infinite number of combinations of
parameters in a performance-based fire-resistance approach, it is crucial to characterize the
fire performance of intumescent coating in different fire exposures and structure designs.

In actual technical regulations, this topic is generally not yet addressed, but in some
countries, such as Italy, guidelines and technical references have been issued. Indeed, the
DCPREV 9962 [29], enacted in July 2020, clarifies the use of fire protections with natural
fire curves, prohibiting the design and assessment of steel elements protected with IC, as
their behaviour under natural curves is unknown both in terms of thermal and mechanical
properties (e.g., adhesion); this severely limits the adoption of FSE. In addition, in the
FSE approach, advanced calculation methods are usually used for thermo-mechanical
analyses and all the thermal properties have to be known including their variation with
temperature. Right here, a problem arises; indeed, this variation is known only with
standard fire curves used during the certification process in accordance with UNI EN
13381-8 as described before.

Even if numerous researchers have studied the behaviour of ICs under fire curves
different from the nominal ones, it is clear that the problem of designing and assessing
protected steel element by means of a performance-based approach is still open and more
research is needed in order to generalize a common methodology for identifying the IC
temperature-dependent thermal properties.
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4.3. Control of IC Application

For its nature, the fire behaviour of IC mainly depends on dry film thickness (DFT),
adhesion during normal and fire situation, and swelling reaction in fire situations. There-
fore, in order to obtain a full characterization of these protections, several tests have to be
performed before and after its application. All the surface properties are generally assessed
according to several techniques, which are well described in [25].

While in the case of ICs, the UNI 10898-1 [30] establishes the methods for controlling
the application of IC systems, suitable for checking their compliance with the project
specifications, drawn up in operation of the element to be protected and the degree of fire
resistance required (Figure 11).
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The thickness consistency of the IC applied on an element can be measured according
to UNI EN 2808 [31], which contains several methods for determining both the wet-film
and dry-film thicknesses of generic coatings applied to a steel substrate.

The wet-film thickness has to be measured both during and immediately after applying
the IC in order to verify the uniform application of each layer of the IC and the overall
thickness. To measure the wet-film thickness, several alternative methods are suggested
by UNI EN 2808 (see Figure 11). One of the most common methods is the use of a comb
gauge, consisting of a flat plate made of a corrosion-resistant material with teeth along its
edges (see Figure 12).
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The reference teeth at the corners of the plate define a baseline along which the inner
teeth are arranged to give a graduated series of gaps. Each tooth is labeled with the assigned
gap value.

With commercially available comb gauges, the maximum thickness that can be mea-
sured is typically 2000 µm and the smallest increment is typically 5 µm.

After drying of the IC, it is necessary to check that the measured dry-film thickness is
equal to the designed one as well as the uniformity of the IC application. In addition, in
this case, the UNI EN 2808 suggests a series of measuring methods, which are summarized
Figure 11. Among the suggested methods, two widely used ones are acoustic (ultrasonic
thickness gauge) and optical instruments. The first type identifies the coating thickness
by measuring the propagation time of the waves through the layer to be measured up
to the steel substrate. Noninvasiveness and high precision are the advantages of using
this instrument; moreover, the new generation ones are very simple to use, also in situ,
after the application of the IC to the steel elements. The optical instrument allows for a
direct measurement of the thickness up to the steel substrate via a slight cut on the painted
surface. The blades are normalized, and the thickness can be obtained directly by reading
the value through a graduated microscope. The instrument is slightly invasive, and it
can be considered a good tool to check the measurements obtained by the ultrasonic one
(Figure 13).
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Another important parameter for the IC is the adhesion to the steel support and
the compatibility between the layers of the protective package (i.e., primer, coating, and
topcoat), which can be assessed according to UNI EN ISO 4624 [32]. In particular, the
minimum tensile force necessary to detach the IC from the steel surface (adhesive failure) or
the weakest layer of the IC system from the other ones (cohesive failure) has to be measured.
The nature and preparation of the substrate and the IC type may influence the test results.
Then, it is necessary to refer to standardized procedures (see Figure 14). The main steps for
the preparation and execution of the test are summarized below:

• Step (a)—surface preparation: to guarantee the bond between the dolly and the coating,
degrease the dolly and the area of the coating to be tested using alcohol or acetone to
remove any oil, moisture, or dust;
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• Step (b)—application of adhesive: It must have cohesive and fixing properties greater
than those of the coating under test in order to obtain a failing of the coating. The
dolly should be gently pushed down to squeeze out excess adhesive and remove it
from around the edges of the dolly (Figure 14). Finally, wait the necessary time for the
adhesive to dry;

• Step (c)—separation of test area: after the adhesive dries, before starting the test, the
paint around the dolly should be removed to isolate a specific diameter test area.
Generally, a drill with a diameter approximately 1 mm larger than the diameter of the
dolly can be used;

• Step (d)—load application: The contact between the dolly and the actuator should be
carefully checked (Figure 14). The force must be applied perpendicularly to the plane
of the coated support at a uniform speed, less than approximately 1 MPa/s.
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Both thickness and adhesion tests, for the control of the IC application (UNI 10898-
1), have to be carried out on several points of the element according to its shape (see
Figure 15). After measuring, the conditions of acceptability have to be satisfied according
to UNI 10898-1.
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5. Conclusions

Intumescent coating is one of the most common materials for protecting steel structures
from fire. Its particular nature of reactive material causes a thickness variation during
the thermal transience with a decrease in its thermal conductivity. Even if this material
is well studied in the literature from the chemical and physical points of view, a lack of
information is sometimes found in the field of certification and design. Indeed, on one hand,
the development of new products with always higher fire performance are required from
the protection market; on the other hand, these protections should be compliant with the
fire safety engineering approach in which natural fire curves are required. Therefore, the
main objective of this paper was to provide a comprehensive overview of the certifications,
design, and control of application procedures for the correct approach to the use of these
fire protections, especially in Italy.

The qualification process of all materials and products employed for structural use is
mandatory in Italy. Provided that performance assessment of IC systems is not covered
by any harmonized standard, their quality certification can be pursued through a national
assessment procedure, regulated by indications of the National Fire and Rescue Service
by means of EN 13381-8:2013 or a European assessment procedure. The latter consists
of a voluntary certification process to be undertaken with the guidance of a TAB and
finally achieving the release of an ETA on the basis of EAD 350402-00-1106, i.e., a product
code concerning the performance assessment of reactive coatings for fire protection of
steel elements.

Regarding the IC design and control of application procedures, it emerges that:

- The data provided by manufacturers allow for application on only a prescriptive-
based approach, obtaining, trough tabular data, the IC thickness necessary for a given
structural element to reach a required fire resistance time;

- Generally, no information is provided about the thermal properties of these materials;
- According to EN 13381-8, a variable thermal conductivity can be calculated starting

from the experimental results, allowing to assess the behaviour of the protected steel



Coatings 2022, 12, 696 16 of 17

elements using both simplified and advanced calculation methods if the ISO834 curve
is used;

- The voluntary application regulations describing the control of intumescent coating
application are often ignored and not applied.

Another important conclusion is that, at the moment in Italy, to model steel structures
protected with intumescent coating is forbidden if the modern fire safety engineering ap-
proach is used, because not much information is available on the behaviour of intumescent
systems under natural fire curves. Therefore, it is necessary to carry out experimental tests
in order to investigate the performance of the intumescent coating under fire curves with
different heating rates in order to identify a common methodology for the definition of IC
temperature-dependent thermal properties.
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