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Abstract: The surface profile of the film formed by spin coating is experimentally investigated in this
paper. The unavoidable wavy form at the surface was observed when the ultraviolet curable resin was
used. In addition, the surface thickness variation was directly related to the viscosity, disk rotation
speed, and disk size. Fluid dynamic theory with non-dimensional analysis was conducted to describe
the surface profile after the spin coating process. It was found that the film had been thickened until
the viscosity force and Coriolis force were balanced. The Coriolis force, however, also affected the
flow instability during the spinning of the disk. The film thickness variation is successfully described
by using the non-dimensional factors. In addition, the edge bump which is induced by hydraulic
jump is expressed by the relation of power law of Ekman, Weber, and Reynolds numbers. In this
paper, the thickness variation and edge bump position are expressed by using hydrodynamic theory.
It is also reveals that the Coriolis force acts based on the magnitude of thickness variation, and the
surface tension affects the edge bump position. The presented relationships will contribute further
understanding of the spin coating process. The outcome of this paper supports the cost-effective
productions of electronic microcircuits and solar cells.

Keywords: spin coating; film thickness; viscosity; hydraulic jump; nondimensional

1. Introduction

The principle of spin coating is that when a small quantity of liquid is applied to
a rotating disk, some of liquid remains on the disk, experiencing thinning as a result of
the balance of viscous force and centrifugal force [1]. Since it is quite favorable regarding
cost and mass production, the spin coating process has found many applications, for
instance, in microcircuit fabrications, magnetic disk coatings, screen display coatings, and
digital video disc production. Elmansouri et al. fabricated poly-o-toluidine thin film by
spin coating on bare glass and indium-tin-oxide-coated glass [2]. They presented optical
transmittance with high absorption in the near infrared region. Thin film synthesis for
the creation of a transparent and flat display by spin coating was investigated by Yu
et al. [3]. A spin coating method was successfully demonstrated to form a CuAlO2/AIN
thin film. A zinc oxide quantum dot-based thin film was synthesized via spin coating
technology [4]. The main advantages were simplicity, low processing temperature, and
cost effectiveness [5,6]. The sol–gel spin coating technique on an ordinary glass substrate
was adopted to fabricate Cu2ZnSnS4 absorber layers for the photovoltaic application [7–10].
Blu-ray discs and other traditional optical storage media have been manufactured by the
spin coating process. This requires highly precise optical cover layer thickness control with
cost efficient technology [11]. For cover layer materials with refractive indexes close to 1.5,
such as polycarbonate and ultraviolet-curable resins, the maximum deviation of a nominal
substrate thickness of 100 µm should not exceed ±3 µm within the recording area [12].

Recently, solar cells became promising candidates for sustainable energy conversion
devices. Since for inexpensive renewable energy sources, it is essential to develop low-
cost solar cells [13], low-cost spin coating has drawn attention for synthesis of the solar
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cells [14–16]. Jiang et al. [17] developed a successful sequential spin-coating procedure for
electrodes for solar cells. However, the thickness uniformity cannot be easily achieved by
using spin coating process because of the unexpected thickness variation and the edge
bump effect, which is known to be an accumulation of the resin at the outer edge of disc
substrate. Subsequently, non-uniform thickness causes optical modulation which requires
additional post-processing. Several methods have been proposed to tackle the problem,
including using ultraviolet bonding of sheets [12] or new spin coating processes and
materials [11]. Nonetheless, there is not sufficient information or theoretical understanding
to describe the thickness non-uniformity and edge bump positions on such a film. The
practical predictive models have been required to support decision-making procedures and
enhance future produce and process design [18].

After Emslie et al. [19] provided a solution of the flow assuming Newtonian liquid flow,
the film thickness has been studied by many researchers from many different points of view,
including non-Newtonian flow [20], a slip model at the interface [21], and evaporation of the
liquid [22]. Asymptotic analysis of the film thickness was conducted by Kitamura et al. [1]
in order to reveal the effects of gravitational and surface tension forces coupled with inertial
force. Lin and Chen [23] investigated the stability of a thin incompressible viscoelastic fluid
during spin coating. They revealed that the rotation number and the radius of the rotating
circular disk generate the destabilizing effects. Linear stability of the flow to axisymmetric
perturbations was studied, and the strong stabilizing influence of the Coriolis forces on
the wave regimes of the film flow over a rotating disk was numerically demonstrated by
Sisoev et al. [24]. Matar et al. [25] simulated the development of finite-amplitude waves
which approximate the shape of quasi-steady periodic traveling waves in a thin viscous
film on a spinning disk. Leinweit et al. [26] found that the wavy form was induced by
surface tension variations at the interface between the film surface and the free air stream.
Tomas et al. [27] showed by their experiments that the thickness of a liquid film was affected
by inertial and frictional forces on the fluid near the center of the disk, and by the centrifugal
force near the outer edge of the disk. The hydraulic jump and concentric waves on the
stationary disk at the outer region were visualized in their paper. Leshev and Peev [28]
examined the profile of the liquid film’s thickness on the rotating disk, and then proposed
that the theoretical equation developed by lubrication theory was in good agreement with
experimental results in light of examination of the Coriolis force term. They observed a
hydraulic jump during their experiment and derived a power law relationship between the
beginning position of hydraulic jump and a series of non-dimensional numbers. Although
previous studies have been conducted concerning physical phenomenon on the liquid
film flow, careful attention is needed to adopt their theories to describe the film thickness
variation in the spin coating process. The variation in the thickness from nominal thickness
is used in order to control the thickness within the desired value. In this work, the average
and deviations of film thickness were measured in a non-constant-flow spin coating process.
The morphology of the film was found to be wavy, and its characteristics are dependent
on the processing conditions disk diameter, rotation speed, and viscosity. Additionally,
the position of the edge bump, which was caused by the hydraulic jump when the coating
liquid spread over the disk surface, was successfully described with the power law relation
of non-dimensional numbers.

2. Experiment

The experiment was conducted in order to measure the film thickness distribution
after an ultraviolet (UV) curing process in different conditions, as shown in Figure 1. The
UV-curable resin (Sigma-Aldrich, Darmstadt, Germany) consisted of a urethan acrylate
oligomer, acrylate oligomer, acrylate monomer, vinyltriethoxysilane, acrylic acid, and
photoinitiator. A predetermined amount of UV-curable resin was supplied as a falling
jet onto the center of the polycarbonate disk by high precision pump to supply the resin
accurately. The disks used in the experiment were 32, 50.8 and 120 mm in diameter. The
mass of resin applied onto the disk was determined by the disk size and the viscosity, as
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summarized in Table 1, where D represents disk diameter. In the spin coating process,
the resin was distributed by spinning of the disk with the desired rotation speed from
1000 to 3000 rpm for 20 s. Then, the disk was stopped. Finally, UV light was used to
cure the resin on the surface of the disk. It should be noted that in this experiment, UV
irradiation captured the surface layer formation after spin coating process. With this,
hydrodynamic characteristics of rotating disk only affected the thickness variation in the
layer. The thickness of the layer manufactured by spin coating was measured along the
radius of the disk by using a non-contact profiler (Ellipsometer, VK-X3000, Keyence, Itasca,
IL, USA). Three types of resins that have different viscosities but relatively little differences
in surface tension and density were chosen in order to investigate the effect of viscosity on
the film thickness variation. Table 1 shows a summary of the experimental conditions.
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Figure 1. Schematic of the spin coating process for an optical record disk.

Table 1. Experimental conditions.

Disk
Diameter

(mm)

Rotation
Speed
(rpm)

Resin

Viscosity
(kg/m·s)

Surface
Tension (N/m)

Density
(kg/m3)

Mass Applied (g)

D = 32, 50.8 D = 120

32 1000 1.3 0.0382 1230 2 6.3
50.8 2000 3 0.0398 1230 1.8 6
120 3000 5 0.037 1260 1 5.9

3. Results and Discussion

The film’s flow on a rotating disk can be simply described with cylindrical coordinates,
as shown in Figure 2. The measured average thickness was varied from 18.7 to 146 µm
in accordance to the experimental conditions of rotation speed, disk diameter, and type
of resin. The weights of applied mass were from 1 to 2 g for the disk diameters of 32 and
50.8 mm, and from 5.9 to 6.3 g for 120 mm. The experimental results of film thickness
distributions for all the conditions are presented in Figures 3–5. The variation in film
thickness was strongly dependent on the viscosity and rotation speed. The thickness
seemed to vary within a certain amplitude from the average height. This suggests that
the wavy form of the film was induced by the instability of flow during the spinning of
the disk. The amplitude of the wave was proportional to the rotation speed and inversely
proportional to the viscosity, as shown in the graphs. Hence, the wavy form of the film
observed in the experiments was analyzed in terms of standard deviation and average film
height in relation to Ekman number (E = υ/ωR2), which is a non-dimensional measure of
viscous force and Coriolis force.



Coatings 2022, 12, 698 4 of 11Coatings 2022, 12, x FOR PEER REVIEW 4 of 11 
 

 

 

Figure 2. Coordinate system of film flow on a rotating disk. 

The average height (have) divided by radius of the disk (R) was plotted in Figure 6. 

The following formula was acquired from the data fitting, where υ and ω represent vis-

cosity and angular velocity, respectively. 

hqve

R
= 0.02 (

υ

ωR2
)
0.55

 (1) 

  
(a) (b) 

 
(c) 

resin

w

r

j

Air stream line

disk

z

1.3 kg/m•s

1000 rpm

3000 rpm

2000 rpm

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0.5 0.6 0.7 0.8 0.9 1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0.5 0.6 0.7 0.8 0.9 1

h
/h

a
v
e

r/R

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0.5 0.6 0.7 0.8 0.9 1

h
/h

a
v
e

r/R

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0.5 0.6 0.7 0.8 0.9 1

h
/h

a
v
e

r/R

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0.5 0.6 0.7 0.8 0.9 1

h
/h

a
v
e

r/R

3 kg/m•s

1000 rpm

3000 rpm

2000 rpm

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0.5 0.6 0.7 0.8 0.9 1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0.5 0.6 0.7 0.8 0.9 1

h
/h

a
v
e

r/R

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0.5 0.6 0.7 0.8 0.9 1

h
/h

a
v
e

r/R

5 kg/m•s

1000 rpm

3000 rpm

2000 rpm

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0.5 0.6 0.7 0.8 0.9 1

Figure 2. Coordinate system of film flow on a rotating disk.

The average height (have) divided by radius of the disk (R) was plotted in Figure 6. The
following formula was acquired from the data fitting, where υ andω represent viscosity
and angular velocity, respectively.

have

R
= 0.02

(
υ

ωR2

)0.55
(1)
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Figure 3. Radial distribution of film thickness: 32 mm disc diameter. (a) 1.3 kg/m·s, (b) 3 kg/m·s,
(c) 5 kg/m·s.
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Figure 4. Radial distribution of film thickness: 50.8 mm disc diameter. (a) 1.3 kg/m·s, (b) 3 kg/m·s,
(c) 5 kg/m·s.

The average film thickness was proportional to the Ekman number, which implies
Coriolis force and viscous force were dominant with our experimental conditions. In the
case of a constant flow rate, the average film height at a local radius has been described
as a function of viscosity, angular velocity, radial distance, and flow rate as well [29,30].
However, the relation in Equation (1) shows that average thickness is independent of flow
rate and only depends on Ekman number. In this range of applied mass, no relationship
was found between applied mass and thickness in the experimental results. It is thought
that the average thickness of the liquid film reached a steady state when the viscous force
and the Coriolis force were balanced, so as to maintain constant thickness, which was
irrelevant to the masses applied within our experiments. Therefore, the average thickness
can be described with the Ekman number. The Reynolds number at the end of disk, which
was in the order of 10−4, also supports the validity of the explanation of the film thickness’s
dependency on the Ekman number, as such a low Reynolds number means less significance
for the flow rate compared to other effects. As a result, the film thickness is proportional to
the Ekman number in the relation of Equation (1).
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Figure 5. Radial distribution of film thickness: 120 mm disc diameter. (a) 1.3 kg/m·s, (b) 3 kg/m·s,
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Figure 7 shows the relationship between standard deviation (σ) divided by average
height and Ekman number. The deviation was inversely proportional to the Ekman number,
and the magnitude seemed to be dependent on the disk radius. In other words, a large
Ekman number and a large disk diameter induced small deviation in the film’ thickness.
In numerical analysis conducted for constant flow rate by Matar et al. [25], decreasing
the value of E, which corresponds to increasing the significance of the Coriolis force, led
to stabilizing the film flow. This is the opposite of the result which is shown in Figure 7.
However, the large value of Ekman number means a relatively strong viscous effect on the
flow so as to stabilize the film flow. It is inferred that the large viscous force suppressed the
unstable film flow induced by the Coriolis force. In order to achieve a flat surface for the
film, it is significant that the spin coating process is controlled with a large Ekman number
which depends on the disk radius. The standard deviation was replotted by combining
Ekman number and disk radius to quantify the dependency on the disk radius. Figure 8
shows the stability of the film was inversely proportional to the square of disk radius and
Ekman number to the power of 0.8. Nonetheless, the reason for the dependency of stability
on the disk radius is still not clear but presumed to be in accordance with inertial effects.
Further investigation is still going on in this area.
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Edge bumps are one of the serious disadvantages of the spin coating process when
the process is applied to IC circuits and optical disk manufacturing. The hydraulic jump
is formed at the outer edge of rotating disk during the film’s flow [27]. At the hydraulic
jump, the height of the liquid surface suddenly varies, and the flow also changes from a
supercritical to a subcritical flow [31]. The observations from previous works are similar
to those of the experimental results presented in Figures 3–5. It is assumed that the
observed edge bump formed at the outer edge of the disk was caused by a hydraulic jump.
Leshev and Peev [28] successfully described the position of the hydraulic jump by using
Buckingham’s Pi theorem by means of four dimensionless groups which are presented in
Equation (2). The beginning positions of the edge bump for experimental conditions were
recorded, where the thickness increased steeply. However, when the thickness variation
was large compared to average thickness, it was difficult to discriminate whether the steep
increase in thickness came from wavy form or hydraulic jump. In order to predict hydraulic
jump position reasonably, the data were used when the changes in thickness were below
3% of average thickness. This criterion also makes the obtained relation useful to practical
applications. The radial position of the hydraulic jump beginning (r’) is supposed to
depend on the rotation speed (ω); the volumetric flow rate (Q); and the material properties
of density (ρ), viscosity (υ), and surface tension (σ). The following equation was acquired
by non-dimensional analysis [18].

r′

R
= A

( υ

ωr′2
)α( σ

ρω2r′3

)β( Q
r′υ

)γ
(2)

The values of the powers and the coefficient, A, were derived by regression analysis
from the experimental data. While Leshev and Peev [28] performed the analysis for constant
flow rate of the liquid on the rotating disk, the author was concerned about the change in
thickness after applying a certain amount of liquid to the center of the disk. The flow rate
was explicitly evaluated by using the momentum equation of a polar coordinate system,
Equation (4), where vr is velocity in the radial direction and z is the coordinate in the
vertical direction, as shown in Figure 2.

ν
∂2υr

∂z2 − 2ωυr = 0 (3)

Q = 2πR
∫ h

0
υrdz (4)

Q =
2πω2R2h3

3υ
(5)

Finally, the variables of Equation (2) were calculated by regression analysis of the
experimental data with the following ranges of non-dimensional numbers.

E = 9.38× 10−4 ∼ 1.48× 10−2, We = 1.38× 10−6 ∼ 6.92× 10−4, Re = 1.51× 10−5 ∼ 2.30× 10−4

r′
R = 0.8782

(
υ
ωr′2

)0.0017(
σ

ρω2r′3

)−0.0104( Q
r′υ

)0.0003 (6)

This result was compared with the experimental data of edge bump positions, as
shown in Figure 9. The positions of edge bumps can be predicted by non-dimensional
numbers with good accuracy, even though a high Ekman number was found alongside
a relatively low Reynolds number. It can be seen that the position of the hydraulic jump
was successfully described by the Ekman number, Weber number, and Reynolds num-
ber. Within the ranges of the non-dimensional numbers, the Weber number was found
to be a more significant factor than the other two non-dimensional numbers. This means
that the hydraulic jump corresponded to the ratio of surface tension to centrifugal force.
Equation (6) successfully describes the positions of edge bumps when adopting the hy-
draulic jump relation. This is the evidence that the edge bump observed after solidification
of the liquid film was induced by the hydraulic jump during spinning of the disk.
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4. Conclusions

The profile of the film formed by spin coating was successfully described by applying
hydrodynamic theory. The viscosity and rotation speed of the disk affected the characteris-
tics of the thickness. It was shown that the film thickness and deviation of the thickness can
be predicted by the Ekman number. The Coriolis effect caused by rotation of the disk was
thought to induce flow instability, which led to the wavy form of the film manufactured by
spin coating process. The edge bump position was expressed by the power law relationship
of Ekman, Weber, and Reynolds numbers. We inferred that the hydraulic jump induces
the edge bump which was observed after curing the film by UV light. The relationships
obtained by this work are expected to be useful to predict the thickness, thickness variation,
and position of an edge bump in the spin coating process.
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