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Abstract: The purpose of this study is to build a parametric algorithm combining analytical results
and Machine Learning in order to improve the tribological performance of coated piston rings
and thrust bearings in mixed lubrication using different synthetic lubricants. The friction models
for piston ring conjunction and pivoted pad thrust bearing consider the basic lubrication theory,
the detailed contact geometry and the complete lubricant action for a wide range of speeds. The
data produced from the analytical solutions are used as input for the training of regression models.
The effect of TiN, TiAlN, CrN and DLC coatings on friction coefficient are investigated through
multi-variable quadratic regression and support vector machine models. The optimum selection is
considered when the minimum friction coefficient is predicted. Smooth TiN2 and TiAlN coatings
seem to affect better the ring friction coefficient than rougher steel, TiN1 and CrN coatings using
an uncoated or coated Nickel Nanocomposite (NNC) cylinder. Using an NNC cylinder for better
durability, the friction coefficients were found to be higher by 31.3−58.8% for all the studied rings due
to the rougher surface morphology. On the other hand, the results indicate that pads coated with DLC
show lower friction coefficients compared to the common steel and TiAlN, CrN, and TiN applications.
The multi-variable second-order polynomial regression models were demonstrated to be 1−6% more
accurate than the quadratic support vector machine models in both tribological contacts.

Keywords: coating; piston ring; thrust bearing; numerical analysis; Machine Learning; coefficient
of friction

1. Introduction

There is no doubt that tribological interactions have a dominant impact on engineering
design. A good understanding of the generated friction for various tribological components
is needed, owing to the increasing cost of fuel in conjunction with the environmental
impacts. Piston rings and thrust bearings are two machine elements, where the tribologists
have given attention in long-term efficiency and low cost of maintenance. Accordingly,
these tribological contacts can be improved through their mechanical design and the
properties of the fuel [1–3].

The piston group is the major contributor of parasitic losses, where the piston rings
are an important part of this due to their excellent sealing performance and high friction
losses under various loads. Therefore, different approaches have been used to improve
fuel economy and durability. The selection of the appropriate coating is one of them. In
the literature, first calculations on piston ring–liner contact were reported by Castleman [4]
and Eilon et al. [5]. They used a 1D-Reynolds equation to predict lubricant film considering
the effect of pressure, speed and lubricant viscosity. Later, in 1960, Furuhama [6] showed
experimental results for piston ring conjunction using the direct measurement of friction
using a floating liner. These results were compared with analytical predictions showing
high friction at TDC reversal due to the mixed regime of lubrication. Furthermore, the
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effect of partially lubrication along the ring face width has been provided by Brown and
Hamilton [7]. It was found that inlet starvation clearly influenced the predicted oil thickness.
Ring–liner sealing performance is also affected by the ring contact face combined with
cylinder liner geometry. In this topic, new studies were carried out regarding the effect of
cylinder liner profile and its impact on the elastodynamics of the ring. Analysis of the ring
complex motion because of the distorted bore has been presented by Ma et al. [8], showing
their effects on oil film and friction, and by Tian et al. [9], who considered their effects
on ring flutter and oil loss. In fact, the thin nature of the piston rings promotes transient
dynamics conditions owing to the cylinder bore shape, which can reduce the ring sealing
effect, as shown by Baker et al. [10]. With increased in-cylinder pressures and low speeds
at the TDC zone, there would be high direct boundary interaction for thin piston rings as
experimentally presented by Zavos et al. [11]. Therefore, a balance between contact friction
and piston ring design should be sought. Taylor et al. [12] reported that ring frictional
losses are predominant using low-viscosity lubricants when the engine speed is low at
the traffic zone. This can be explained as the result of reduced minimum lubricant film.
Knauder et al. [13] investigated the impact of a low viscosity SAE 5W30 lubricant on the
piston group, crankshaft bearing and valve train for different IC engines. They found that
the piston group and valve train efficiency is limited at high loads and low speeds, while
the crankshaft bearing fuel efficiency can be clearly improved. To outcome potential risks
that arise from reduced lubricant viscosity, different coatings are used in piston ring and
cylinder surfaces. Recent investigations, experimental and numerical, have shown that
some coatings can lead to decreased friction and lower wear [14–17]. The combination of
coating topography and lubricant plays a specific role in boundary friction losses, where
the effect of asperity interaction is predominant under a mixed regime of lubrication [18,19].
Therefore, an investigation of ring pack design and synthetic lubricant mechanisms should
be mentioned for overall optimization in terms of fuel economy and engine durability.
The above parameters were studied by Zhmud et al. [20] providing that the ring pack,
cylinder liner surface finish and low viscosity lubricants are very important for the engine
performance. This can be explained using appropriate CFD models [21,22] that combined
the influence of the lubricant additives and the transient lubrication phenomena within
the contact.

Another tribological couple of great interest is the pivoted pad thrust bearing with the
rotor, which is designed to carry axial loads in dynamic conditions of rotating machinery.
The principal of operation is based on the relative motion of the two surfaces and the
convergent wedge shaped between them sucking the oil inside the contact. Such assemblies
can be found in many applications. Industrial and naval applications are the most common
of all, where the thrust bearings are forced to carry loads up to several hundred and in
some cases even several thousand tons. The needs of modern economy and the new
environmental standards leave no doubt that these bearings must operate at maximum
load-carrying capacity with the minimum possible frictional losses. As a result, a variety of
design improvements such as different surface profiles, texturing and pad surface coatings
are carried out in order to improve their performance. To begin with, the shape of the oil
film profile has a major impact on the load-carrying capacity of the bearing. After studying
different one-dimensional film thickness profiles, Anandan et al. [23] showed that the
polynomial profile is found to cause the maximum influence. Furthermore, Papadopoulos,
Nikolakopoulos and Kaiktsis [24] studied the maximization of load-carrying capacity in
sector pad thrust bearings with periodical partial trapezoidal dimples. The results showed
that parallel thrust bearings textured by this type of dimples provide substantial load-
carrying capacity levels. In 2005, Mahieux [25] presented his work regarding the influence
of coating materials on the hydrodynamic behavior of thrust bearings. Clear evidence was
provided that the nature of the material has a major impact on the bearing’s hydrodynamic
behavior. The polymer coatings tested for this study were able to carry a large amount
of load via surface deformations when the Babbitt-coated pad was forced to tilt. At the
same time, although both polymer coatings (PTFE, PFA) had similar material properties,
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important differences were noted in the hydrodynamic behavior of the pads. Moreover,
Jahanmir et al. [26] studied the load capacity and durability of H-DLC coated hydrodynamic
thrust bearings. Through their work, it was shown that a fully wetted bearing can carry the
highest amount of load compared to a half or partially wetted surface. At the same time,
while tested in start–stop and impact conditions, the H-DLC-coated thrust pads showed
both stability as well as the ability to endure more test cycles compared to the uncoated
bearings. In addition, Katsaros et. al. [27] built a THD model of pivoted pad thrust bearing
to compare Babbitt, PTFE and DLC coatings. It was shown that PTFE and DLC-coated pads
provide lower friction in comparison to steel and Babbitt surfaces. To add to that, the DLC
coating was chosen as the most suitable for thrust bearing applications when examining the
effect of the coating on the flow and thermal fields of the bearing. Finally, the tribological
performance of PEEK, PTFE and ATSP was examined by Nunez et al. [28] under boundary
and mixed lubrication regimes at different aggressive experimental conditions. The results
showed that these coatings and their blends provide low friction and high wear resistance
when under different lubrication regimes and high contact pressures.

Nowadays, the rise in computing power and the massive network speeds led to
rapid changes in technology and industry. The 4th industrial evolution or Industry 4.0
conceptualizes a wide range of applications such as the Internet of Things (IoT), Artificial
Intelligence (AI) and Machine Learning (ML), which have been already applied in many
technological areas including mechanical engineering. Machine Learning (ML) methods
have been used in engineering for the solution of complex, non-linear, multi-dimensional
problems that depend on a large amount of data [29]. For example, in tribology, Artificial
Neural Network (ANN) techniques were used to predict mechanical properties [30] as well
as friction and wear in lubricated contacts [31,32]. Furthermore, the fault diagnosis and
life estimation of bearings has been studied by many authors utilizing ML. Kokkinidis and
Nikolakopoulos [33] carried out a computer simulation of misaligned journal bearing using
a neural network. They developed an Artificial Neural Network (ANN) model to train,
test, and validate the performance parameters of journal bearing evaluated using the finite
difference method (FDM). Ahmad et al. [34] presented a method combined a dimensionless
health indicator (HI) to estimate the Residual Useful Life (RUL) of roller bearings using
dynamic regression models. ML algorithms have also been used to predict acceptable
operating conditions for different types of bearings. Katsaros and Nikolakopoulos [35]
determined the effect of lubricant viscosity in pad thrust bearing tribological performance
utilizing different regression models. The ML model built for this study compared three
engine lubricants under various loads and speeds in order to predict optimal operating
conditions. At the same time, Rossopoulos and Papadopoulos [36] created an analytics
methodology based on ML in order to predict the performance of a marine journal bearing
solving numerically the Reynolds equation in the hydrodynamic lubrication regime for
different operating conditions. They tested different Machine Learning techniques consid-
ering the effect of shaft misalignment on lift-off speed. On the other hand, in the piston
ring tribological problem, ML methods have been extensively used in friction and wear
evaluation as well as manufacturing processes. Senatore et al. [37] found the lower average
friction losses of piston ring–liner conjunction utilizing an Artificial Neural Network (ANN)
model. Wołowiec-Korecka et al. [38] trained a neural network model for the creation of
low-frictional coatings on piston ring surfaces. They built an industrial tool to optimize
the nitriding process under reduced pressure in the piston ring manufacturing process.
The current study is a continuation of the work from Katsaros and Nikolakopoulos on the
combination of tribological analysis with Machine Learning techniques [35,39], adding the
piston ring to the group of assemblies possible to be analyzed with the investigated Ma-
chine Learning models. The coating selection is also an add-in to the research. Eventually,
the well-known tribo-contact will be included in the investigation with multiple variations
in the input parameters of the study.

The aim of this study is to build an ML model based on regression algorithms in order
to predict the optimum design parameters in terms of coating application and suitable
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lubricant selection for both piston ring and pad thrust bearing assemblies. A dataset of
different operating conditions was generated by solving both tribological contacts for a
variety of coatings, lubricants and velocities. Both lubrication problems were analyzed
using time-efficient models, coating’s topography and the Greenwood and Tripp’s [40] ap-
proach for asperities interactions. This feature enables the designer to explore the influence
of different parameters and ensures efficient comparisons of different machine learning
solutions. Viscous and boundary friction were predicted, and the friction coefficient was
determined in all studied cases. The predictive capabilities of the models with different
regression methods were discussed by showing the best lubricant and coating selection
for each component in mixed lubrication regime. The originality of this paper lies in the
combination of tribological analysis models with Machine Learning techniques in order to
identify and design tribo-contacts such as piston rings and pad thrust bearings in terms of
optimum lubrication and coating selection, which is a topic that has not yet been tackled as
a subject for research in a literature review.

2. Methodology
2.1. Piston Ring Lubrication Model

Analytical and experimental investigation of the piston ring surface is essential in
order to find how the coating properties and lubricant oil react throughout the engine
operating cycle. Gore et al. [16] presented some measurements of friction for coated surfaces
in a sliding tribometer, and these predictions were compared using an analytical model
showing strong agreement. An important consideration of this predictive method was
the use of realistic asperity interactions within the contact upon coating properties with
fast solution that were not very complex. This was also described by Zavos [18] modeling
two coated thin piston rings with different topography. Therefore, this paper follows
this time-efficient approach for the ring–liner conjunction in order to generate a sufficient
dataset under different operating conditions and lubricant properties.

Figure 1 shows the rough profiles of the ring–liner conjunction including the typical
contact parameters with corresponding generated pressures. A symmetric parabolic ring
shape was used here as follows:

hs(x) =
x2

2r
(1)

where r is the radius of the ring curvature. This eliminates the complexity of the analytical
process, and the generated integrals can be solved algebraically as well. The ring curvature

can be given as c = ( b
2 )

2

2r , where b is the ring face width.
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Gore et al. [16], Zavos [18], and Mishra et al. [41] have shown that the generated
pressures in the partially lubricated ring–liner contact are inadequate to cause any localized
deformation. Therefore, the analysis can adopt an iso-viscous lubricant under isothermal
conditions where the variation of film thickness can be described as:

h(x) = ho + hs(x) (2)

where ho is the minimum film and hs(x) is the ring profile. Equation (2) provides that the
ring profile conforms perfect along the cylinder liner. This condition is ideal here as well as,
in practice, the ring–liner conformance is partial and the ring flutters into the piston groove.
Therefore, a two-dimensional analysis should be attained. This trend is a future direction
of the current work.

The interface between the ring and liner has a thin film of lubricant where the lubrica-
tion states are changed from mixed to hydrodynamics during the piston stroke. Under a
hydrodynamic regime of lubrication, the pressure distribution within the lubricated zone
is calculated using Reynolds exit boundary conditions, ignoring squeeze film motion [42].
Fully flooded inlet conditions are also used. Figure 1 shows the flow conditions into the
contact. The rise of the hydrodynamic pressure in the converging part of the ring is obvious
in the figure. pin and pout are the gas pressures at the left and right sections of the piston
ring. Thus, the total ring load can be defined as:

Wtot = Wh + Wc (3)

where Wh is the load due to lubricant film and Wc is the load by asperities. The hydrody-
namic load can be predicted as [42]:

Wh = 2.45rL
(

µU
ho

)
(4)

where U is the sliding velocity and µ is the dynamic viscosity. The stochastic model of
Greenwood–Tripp [40] was used to predict the load by asperities. This generated load can
be predicted as:

Wc =
16
√

2
15

π(ζκσ)2
√

σ

κ
E∗AF5/2(λs) (5)

where ζ and κ are the relative parameters according to the studied coated surfaces. σ is

the combined standard deviation of roughness σ =
√

σ2
r + σ2

l . λs considers the Stribeck
lubricant film ratio. As for the statistical function of F5/2, a fifth-order polynomial curve
was used, as it is mentioned by Teodorescu et al. [43]. Therefore, for λs ≤ λcr = 2.22:

F5/2(λs) = −0.0046λ5
s + 0.0574λ4

s − 0.2958λ3
s + 0.7844λ2

s − 1.077λs + 0.6167; (6)

and for λs > λcr = 2.22:
F5/2(λs) = 0 (7)

where λcrit is the critical film ratio. To conclude the calculation of the asperities along the
ring profile for which the lubricant film falls below the critical film ratio, it is important
to find the actual asperities located close to the contact center. For this reason, the contact
area A through Equation (5) should be altered for the symmetric parabolic ring. Thus, the
integral term in Equation (5) can be expanded as [16,18]:

∫
F5/2(λs)dA = L

√
2σr{2

√
λs

3465
[λs(λs M− 1244.62) + 2136.86]}

λcr

λ
(8)

where λ = ho
σ , λcr =

hcr
σ = 2.22 and M = −1.449λ3

s + 22.099λ2
s − 146.421λs + 543.5892.
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The total ring friction is calculated by the viscous shear of lubricant film (viscous) and
the direct contact by the asperities (boundary). This can be obtained as:

ftot = fv + fb (9)

where for the ring symmetric parabolic shape, the viscous friction is given as [16,18]:

fv = µUL
∫ b

2

−b
2

1
h(x)

dx = 2µUL
∫ b

2

o

1
h(x)

dx = 2µUL
√

2r
ho

tan−1
(

b
2
√

2rho

)
(10)

and the boundary friction is [16,18]:

fb = τoπ2(ζκσ)2L
√

2σr{2
√

λs

3465
[λs(λsN − 928.96) + 1733.53]}

λcr

λ
+

µasp
16
√

2
15

π(ζκσ)2
√

σ

κ
E∗L
√

2σr{2
√

λs

3465
[λs(λs M− 1244.62) + 2136.86]}

λcr

λ

(11)

where the latter parameter of the real contact of the asperities for the studied ring is
expressed as:

Ac = π2(ζκσ)2
∫

F2(λs)dA (12)

where the integral term in Equation (13) can be obtained as [16,18]:

∫
F2(λs)dA = L

√
2σr{2

√
λs

3465
[λs(λsN − 928.96) + 1733.53]}

λcr

λ
(13)

where λ = ho
σ , λcr = hcr

σ = 2.22 and N = −0.567λ3
s + 10.8185λ2

s − 85.536λs + 364.3794.
With regard to the coefficient of boundary shear strength, the surface roughness of the
piston ring profile during the running-in process would affect this parameter, which can be
captured using an Atomic Force Microscope (AFM) [44]. In this analysis, this value was
constant for all running cases using the measured value of 0.22 [16]. Practically, a detailed
investigation for all coated profiles would be required in the next work.

2.2. Thrust Bearing Lubrication Model

The hydrodynamic lubrication analysis of the pad thrust bearing for this study is based
on the assumption that the flow of the lubricant is considered to be laminar and isothermal.
The lubricant is assumed to be Newtonian, iso-viscous and incompressible. The minimum
pressure value developed inside the film is assumed to be above the vapor pressure of
the lubricant; thus, no cavitation effects are taken into consideration. Furthermore, the
bearing’s surface deformations due to hydrodynamic and thermal loads are assumed to
“forbid” the lubricant from escaping the conjunction. According to Aurelian et al. [45], slip
can occur when the solid surface is smooth enough, and the oil is under relatively high
shear stress. As a result, the no-slip assumption is taken into consideration for the fluid
film that obtains the same velocity as the solid surface (rotor) that it comes into contact
with. A schematic of the pivoted pad thrust bearing is shown in Figure 2.
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Figure 2. (a): Thrust bearing assembly [27]; (b): Schematic of the pivoted pad [46]. Reprinted with
permission from Ref. [46]. Copyright 2001, Elsevier; (c): Schematic of the rough surfaces.

In order to calculate the pressure distribution over the pad’s surface, the infinite linear
pad bearing approach [46] is taken into consideration. Thus, the 1-D Reynolds equation is
integrated over the pad’s surface. The film is expressed as a function of x:

h = f (x) = h0(1 +
Kx
B

) (14)

where K is defined as the convergence ratio:

K =
h1 − h0

h0
(15)

After the integration of the 1-D Reynolds equation over the surface of the pad, the
pressure distribution is expressed as a function of the film thickness h:

p =
6UµB
Kh0

(−1
h
+

h0

h2
(K + 1)
(K + 2)

+
1

h0(K + 2)
) (16)

In order to calculate the load-carrying capacity of the pad, the pressure is then inte-
grated over its surface:

Wh =
6UµLB2

K2h2
0

(− ln (K + 1) +
2K

K + 2
) (17)

The calculation of the corresponding viscous friction force is based on the integration
of the shear stress: τ = η d

dz ((
z2−zh

2µ ) ∂p
∂x −U z

h + U) over the pad’s surface:

fv =
UµLB

h0
(

6
K + 2

− 4 ln (K + 1)
K

) (18)

When the film thickness of the lubricant becomes very thin, then the asperities of the
two surfaces (pad and rotor) come in contact with each other, and the total load-carrying
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capacity of the pad is directly affected by the load of the asperities. The stochastic model
of Greenwood–Tripp [40] is used to predict this load. As a result, the total load-carrying
capacity of the pad is also calculated from Equation (3).

Moreover, the contact of the asperities has an additional influence on the pad’s friction
force. The total friction force is also a sum of the viscous friction and the boundary friction
as already described in Equation (9). For the calculation of the boundary friction, the
asperities load Wc and the contact area due to direct asperities contact Ac need to be taken
into consideration:

fb = τ0 Ac + µaspWc (19)

where τ0 and µasp are the Eyring shear stress and the coefficient of boundary shear strength,
accordingly.

The contact area due to direct asperities contact is predicted as follows:

Ac = π2(ζβσ)2 AF2(λs) (20)

As mentioned above, ζ and β are parameters correlated to the studied coated surface
and σ corresponds to the equivalent of the roughness standard deviation for the pad and

the rotor surfaces (σ =
√

σ2
p + σ2

rot). The statistical Gaussian distribution of asperities is
also assumed to be a 5th-order polynomial function of the Stribeck lubricant film ratio [43].

F2(λs) = −0.0018λ5
s + 0.0281λ4

s − 0.1728λ3
s + 0.5258λ2

s − 0.8043λ + 0.5003 f or λs ≤ λcrit (21)

and
F2(λs) = 0 f or λs > λcrit (22)

The functions F5/2 and F2 represent the statistical manner of interactions for the
deformed asperities as the one surface approaches the other. In order to improve the
accuracy of the model for a specific pair of surfaces, the corresponding parameters must
be defined. The parameters; κ, σ, β and ζ are usually determined by several metrology
systems. Furthermore, in order to correctly apply the assumption of a Gaussian distribution
for peak heights, the standard deviation and mean of the peak heights are needed. The
functions F5/2 and F2 as well as the roughness parameters determine the possible number
of asperities that are been penetrated at a given surface segment and the extent of their
deformation. To add to that the different apparent areas shown in Equations (12) and (20)
will lead to different results for the same material and operational conditions for the two
examined tribo pairs.

2.3. Solution of the Analytical Methods

For both the piston ring and the pad bearing tribo-contacts, at any load conditions, the
contact reaction must reach the applied load. This is achieved using the following criterion
for each sliding velocity:

Σ =
|F−Wtot|

F
≤ 0.1% (23)

If the criterion is not met, then the minimum film is modified as follows:

hn+1
o = (1 + εΣ)hn

o , n ≥ 1 (24)

where n is an iteration counter and ε is the damping coefficient with the value of 0.15. The
latter parameter is used for solution stability and fast convergence. When the convergence
criterion is satisfied, the total friction is been calculated. For this analysis, the process
is repeated for all studied piston rings and cylinder liners as well as pivoted pad thrust
bearings. The analytical solution of the conjunctions is illustrated and summarized in
Figure 3.
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The algorithm begins with the values of the input parameters: lubricant viscosity,
movement velocity, external applied load, and initial minimum film thickness. Then, the
hydrodynamic lubrication problem is solved, and the corresponding load is calculated for
the conjunction. At the same time, the additional load caused by the asperities contact is
also calculated and added in the total load of the mechanism. In the next step, the balance
between the external and the total load is checked. If there is a difference higher than the
criteria (1 × 10−3), then the algorithm goes back to the input of minimum film thickness
and updates the value. The process is repeated until the convergence criterion is met. For
the last step, the final minimum film thickness, the viscous and boundary friction as well
as the coefficient of friction are being calculated for the tribo-contact.

2.4. Lubricant Properties

Six types of lubricants are examined in this study. For the case of the piston ring–liner
contact, three engine oils SAE 15W40, SAE 5W30 and SAE 0W20 are studied, while for
the case of the pivoted pad thrust bearing, three different lubricants are also examined: a
mono-grade oil SAE 30, a multi-grade oil SAE 10W40 and a bio-lubricant AWS100. Taylor
et al. [12] and Katsaros et al. [35] described the rheological properties of these lubricants,
particularly for tribo-contacts such as piston rings and pad thrust bearings. The effective
lubricant viscosity through the average lubricant temperature is predicted using the Vogel
equation [47]:

µ(θαv) = kexp
(

θ1

θ2 + θav

)
(25)

where k, θ1 and θ2 are the parameters of each oil, and θav is the average temperature.
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Table 1 shows the input parameters of the Vogel expression and the corresponding
dynamic viscosities at 120 ◦C. This temperature corresponds to warm conditions according
to the New European Drive Cycle (NEDC) [48].

Table 1. Input parameters of the Vogel equation and the dynamic viscosities at temperature of 120 ◦C.

SAE 15W40 SAE 5W30 SAE 0W20 SAE 30 SAE 10W40 AWS 100

k (mPa·s) 0.029 0.07 0.071 0.02 0.026 0.049
θ1 (◦C) 1424.3 992.1 983.2 1361 1420 960.2
θ2 (◦C) 137.2 111.9 116.2 125.1 135.3 110.8
µ (Pa·s) 0.0073 0.005 0.0045 0.0051 0.0067 0.0031

3. Machine Learning Techniques

Regression models are popular in Machine Learning applications mainly because
they are simple to use, interpret and relatively accurate in predicting the desired values.
Linear and polynomial regression models have been reviewed by Maulud et al. [49] as
some of the most common and comprehensive statistical and Machine Learning algorithms.
Furthermore, over the last few years, regression models have been chosen for a wide range
of engineering applications such as prognosis of a wind turbine gearbox bearing remaining
useful life [50], lubrication regime classification of hydrodynamic journal bearings [51] as
well as tilting-pad thrust bearings hydrodynamic lubrication analysis for various operating
conditions and lubricants [35,39]. The model used in this study in order to describe the
relationship between the predictors and the response values is the multi-variable, 2nd-order
polynomial regression based on the least squares methodology in which the sum of the
squares of the residuals needs to be minimized.

As described in [35], all the data obtained from the lubrication models of the piston
ring and the pad bearing create a set of n-observations that lead to a system of n-equations
which in matrix form is generated as follows:

Y =


y1
y2
...

yn

 =


1 x11 x21 x11

2 x11x21 x21
2

1 x12 x22 x12
2 x12x22 x22

2

...
...

...
...

...
...

1 x1n x2n x1n
2 x1nx2n x2n

2




β0
β1
β2
β03
β4
β5

 (26)

Or
Y = XB (27)

where yi represents the dependant variable (or the response values), xij are the independent
variables (or the predictors) and βi, i = 0 . . . 5 represent the constants that derive from
the solution of the above equation, with β0 being the y-intecept of the polynomial surface
and βi, i = 1 . . . 5 being the coresponding slopes. In this specific model, y represents the
coefficient of friction, x1j represents the sliding velocity of the piston ring or the rotor of the
pad (m/s), and x2j represents the young modulus of each coating applied for testing (GPa).

In order to determine the accuracy of the model to predict the response values, the
coefficient of determination R2 is calculated in each case:

R2 = 1− ∑n
1 (y− ŷ)2

∑n
1 (y− y)2 (28)

where y represents the values that derive from the analytical solutions, ŷ represents the
predicted values and y is the mean of the true (analytical) values.
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The standard error of the estimate has also been taken into consideration in the
discussion of the results in terms of average deviation from the observations:

S =

√
Σ(y− ŷ)2/n (29)

For comparison purposes, Support Vector Machine Quadratic Regression models are
trained using the polynomial kernel function for the same datasets:

(X, Y) =
(

c + XTY
)2

(30)

All models were trained with 80% of the data from the dataset, and a cross-validation
procedure was applied for 5 randomly chosen partitions of the original datasets. Experi-
mental data were used for the validation of the ML model as shown in [35].

4. Results and Discussion
4.1. Input Data for the Piston Ring and the Thrust Bearing Analysis

Table 2 presents the piston ring contact parameters with operating conditions of this
analysis such as (average) lubricant temperature, sliding velocity and applied load. A
normal load of 60 N was applied as well as the sliding speed, which varied in the range
of 0.5 to 5 m/s. These conditions were chosen to maintain a thin lubricant film when
the mixed and hydrodynamic regimes of lubrication were expected, as a thin piston ring
moved during the power stroke for a light motor engine [11].

Table 2. Piston ring base dimensions and operating conditions.

Parameter Value Unit

Ring face width 0.5 mm

Ring radius of curvature 40.5 mm

Ring lateral length 40 mm

Applied load 60 N

Sliding velocity 0.5−5 m/s

Coefficient of boundary shear strength 0.22 -

Eyring shear stress 2 MPa

Lubricant temperature 120 ◦C

For the case of the pivoted pad thrust bearing, the parameters from the experimental
bearing tested from Bielec and Leopord [52] were taken into consideration. In order to
maintain a thin lubricant film and a bearing that is studied in mixed and hydrodynamic
lubrication regimes, the external applied load was assumed to be 7000 N, and the rotating
velocities were simulated in the area of a theoretical start or shut down conditions from 100
to 1000 rpm (sliding velocities from 0.5 to 5 m/s). The main modeling parameters for the
pivoted pad are summarized in Table 3.
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Table 3. Pivoted pad thrust bearing dimensions and operating conditions.

Parameter Value Unit

Pad face width 28 mm

Thrust bearing diameter 124 mm

Inclination 0.1 -

Applied load 7000 N

Sliding velocity 0.5–5 m/s

Coefficient of boundary shear strength 0.22 -

Eyring shear stress 2 MPa

Lubricant temperature 120 ◦C

Tables 4 and 5 summarize the main coating properties including the roughness param-
eters of the piston ring and the cylinder liner surfaces, respectively, which are investigated
in this study. The reference is a steel piston ring with an aluminum (uncoated) cylinder bore.
The properties of CrN, TiN1, TiN2 and TiAlN coatings on the ring surface are also given.
The data of CrN and TiN1 coatings were used by Zavos [18]. In the case of other coatings,
TiN2 and TiAlN, the main properties were obtained by Wróblewski et al. [17]. Additionally,
in contrast to a regular uncoated aluminum cylinder liner, a Nickel Nanocomposite (NNC)
cylinder liner was also applied using data by Dolatabadi et al. [15], in order to determine
and compare the coefficient of friction with the coated piston rings.

Table 4. Coating properties and surface topographical parameters for piston rings.

Parameter Piston Ring Base
Material Ring Coatings Unit

Material Steel CrN TiN1 TiN2 TiAlN -

Young’s modulus
of elasticity 200 400 250 347.45 291.23 GPa

Poisson’s ratio 0.31 0.2 0.25 0.25 0.22 -

Surface roughness 0.4 0.25 0.31 0.11 0.059 µm

Roughness
parameter (ζκσ) 0.0017 0.0023 0.00048 0.00049 0.00044 -

Asperity slope
(σ/κ) 0.0051 0.0034 0.023 0.0245 0.023 -

Table 5. Coating properties and surface topographical parameters for cylinder liners.

Parameter Cylinder Liner Base Material Cylinder Liner Coatings Unit

Material Aluminum NNC -

Young’s modulus
of elasticity 70 165 GPa

Poisson’s ratio 0.33 0.31 -

Surface roughness 0.1 0.35 µm

Table 6 summarizes the main material properties used in this study including the
roughness parameters of the coated pad surfaces. A steel rotor of σ = 1.7 µm is examined
in contact with pivoted pads of steel, TiN, CrN TiAlN and DLC coatings. The average
roughness Ra is used for the studied tribo-contacts. The terms ζκσ and σ/κ are obtained
using the basic theory by Arcoumanis et al. [53], where ζ is the surface density of asperity
peaks and κ is the average asperity radius.
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Table 6. Coating properties and surface topographical parameters for the pivoted pad thrust bearings.

Parameter Pivoted Pad
Base Material Pad Coatings Unit

Material Steel CrN TiN TiAlN DLC -

Young’s modulus
of elasticity 200 400 250 291.43 300 GPa

Poisson’s ratio 0.31 0.2 0.25 0.22 0.25 -

Surface roughness 0.4 0.25 0.31 0.059 0.033 µm

Roughness
parameter (ζκσ) 0.074 0.015 0.027 0.0012 0.0011 -

Asperity slope
(σ/κ) 0.0223 0.0093 0.0129 0.0017 0.0015 -

4.2. Machine Learning Results Based on the Coefficient of Friction

The coefficient of friction is an important characteristic of tribological contacts such as
piston rings and pivoted pad thrust bearings. It can be an indication of smooth operation
for the lubricated conjunction and a clear index of losses in terms of energy and fuel. For
the current study, the total friction force, including both viscous and boundary friction, is
used to calculate the friction coefficient for different operational conditions and coatings
in hydrodynamic and mixed lubrication regimes. These data are then used as input
parameters in order to build prediction models based on regression techniques. All the
models that were generated and discussed in this study along with the coefficients of
determination and the standard errors of the estimate are summarized in Tables 7 and 8.

Table 7. Summary of the regression models.

Regression Models Equations No.

Uncoated Cylinder SAE 15W40 y = 0.449− 0.055x− 0.002z + 0.464×
10−2x2 + 0.331× 10−4xz + 0.300× 10−5z2 (31)

Uncoated Cylinder SAE 5W30 y = 0.509− 0.036x− 0.0025z + 0.380×
10−2x2 − 0.138× 10−4xz + 0.388× 10−5z2 (32)

Uncoated Cylinder SAE 0W20 y = 0.469− 0.033x− 0.0022z + 0.371×
10−2x2 − 0.213× 10−4xz + 0.343× 10−5z2 (33)

NNC Coated Cylinder SAE 15W40 y = 0.371− 0.034x− 0.0011z + 0.182×
10−2x2 − 0.395× 10−4xz + 0.200× 10−5z2 (34)

NNC Coated Cylinder SAE 5W30 y = 0.319− 0.024x− 0.00083z + 0.108×
10−2x2 − 0.300× 10−4xz + 0.140× 10−5z2 (35)

NNC Coated Cylinder SAE 0W20 y = 0.302− 0.023x− 0.00069z + 0.117×
10−2x2 − 0.260× 10−4xz + 0.117× 10−5z2 (36)

Pad Bearing SAE 30 y = 0.819− 0.027x− 0.005z + 0.255×
10−2x2 − 0.139× 10−5xz + 0.684× 10−5z2 (37)

Pad Bearing SAE 10W40 y = 0.770− 0.036x− 0.004z + 0.289×
10−2x2 + 0.200× 10−4xz + 0.621× 10−5z2 (38)

Pad Bearing AWS 100 y = 0.874− 0.015x− 0.005z + 0.200×
10−2x2 − 0.304× 10−4xz + 0.766× 10−5z2 (39)
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Table 8. Coefficients of determination (R2) and the standard error of the estimate (S) for all the
regression models.

Regression Models R-Square Standard Error of the Estimate

Uncoated Cylinder SAE 15W40 0.83 0.017
Uncoated Cylinder SAE 5W30 0.82 0.018
Uncoated Cylinder SAE 0W20 0.80 0.019

NNC Coated Cylinder SAE 15W40 0.97 0.010
NNC Coated Cylinder SAE 5W30 0.96 0.009
NNC Coated Cylinder SAE 0W20 0.95 0.008

Pad Bearing SAE 30 0.89 0.017
Pad Bearing SAE 10W40 0.90 0.015

Pad Bearing AWS 100 0.85 0.021

Figure 4 shows the change of the friction coefficient incorporating the multi-variable,
2nd-order polynomial regression model for all coated piston rings lubricated with SAE
0W20, 5W30 and 15W40 using an (uncoated) aluminum cylinder. The Young’s modulus
shows the type of coatings in the ring surface. CrN, TiN1, TiN2 and TiAlN coatings were
analyzed and compared (see Table 2). The coatings were tested under a constant load of
60 N in the range of 0.5 to 5 m/s. The data points represent the computed analytical values
used as input for the model generation. The blue points correspond to the analytical values
for the case of the SAE 0W20, the red points express the values for the case of the SAE 5W30
and the yellow points present the values of the SAE 15W40. As can be seen, the generated
surfaces are in well conformance with the analytical predictions. In the case of SAE 15W40,
the regression model is given by Equation (31) with R2 = 0.83 and standard error of the
estimate S = 0.017, which means 83% accuracy of predicting the corresponding results
with an average deviation of 0.017. Similarly, in the case of SAE 5W30, the equation of the
prediction model for the coefficient of friction is (32) with R2 = 0.82 and S = 0.018, which
means 82% of accuracy in prediction of the actual coefficient of friction for the contact with
an average deviation of 0.018. Additionally, in the case of SAE 0W20, the regression model
is given by Equation (33) with R2 = 0.80 and S = 0.019 or 80% accurate prediction for the
friction coefficient in terms of sliding velocity and young modulus of the coating with an
average deviation of 0.018 from the observed values.

With regard to the tribological view, in the case of the steel piston ring, the value of
the friction coefficient varies from 0.12 to 0.02 in the range of 0.5−5 m/s lubricated with
SAE 15W40. Using the SAE 5W30 oil, the friction coefficient varies from 0.13 to 0.05, while
for the SAE 0W20 oil, this value increased moderately, ranging from 0.14 to 0.06. In the
case of CrN coating, the friction coefficient varies from 0.1 to 0.007 for SAE 15W40, while
this value increased from 0.11 to 0.008 for both lubricants SAE 5W30 and SAE 0W20. A
rougher TiN1 coating showed higher coefficient frictions ranging from 0.18 to 0.02 for
SAE 15W40 and from 0.2 to 0.04 for both lower viscosity oils (SAE 5W30 and 0W20). At
the same time, the smooth TiN2 and TiAlN coatings are characterized by lower friction
coefficients. The TiN2 coating showed friction coefficients from 0.08 to 0.0045 for SAE
15W40 and from 0.095 to 0.0048 for SAE 5W30 and SAE 0W20 accordingly. Smoother TiAlN
is characterized by lower friction coefficients of 0.06−0.0043 for SAE 15W40 and from 0.076
to 0.0044 for SAE 5W30 and SAE 0W20 accordingly. This explains the impact of the surface
roughness through the roughness parameter (ζκσ) and asperity slope (σ/κ) in the mixed
regime of lubrication. Steel had the highest surface roughness, which was followed by
TiN1, CrN, TiN2 and TiAlN. The change of friction coefficient is in good agreement with
the experimental work of Wróblewski et al. [17], where the morphology of the TiAlN layer
shows some deep defects and slight peaks, which can enhance hydrodynamic lubrication
conditions. For example, in the case of CrN, the friction coefficient varies from 0.13 to 0.11
using the same synthetic oil SAE 5W30 and sliding speed at both studies, while in the case
of smoother TiAlN, the friction coefficient also changes from 0.06 to 0.076. Little variation
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is indicated between values. This difference means that the contribution of the piston ring
profile is essential in the numerical prediction of the total friction.
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SAE 5W30, and SAE 15W40 for coated piston rings with uncoated cylinder liner.

The developed model found lower coefficient values when all the coated piston rings
were lubricated with SAE 15W40 owing to their higher lubricant viscosity, as the ring
profile moved away from the boundary and into the mixed/hydrodynamic lubrication.
This is obvious by the more rapid increase in generated hydrodynamic load for synthetic
oil SAE 15W40; in addition, the fluid velocity becomes higher, and the lubricant viscosity
is greater. This behavior is illustrated in Figure 5. This figure shows the comparison of
the hydrodynamic load and the load carried by the asperities using the low viscosity oil
SAE 0W20 and CrN layer. It is obvious the SAE 15W40 oil has lower load by the asperities
compared to the oil SAE 0W20. This difference is generally 16–70%. This can be explained
due to the higher lubricant viscosity of SAE 15W40 related to the oil SAE 0W20, where
its dynamic viscosity is quite lower. In addition to this, the generated minimum films
produced higher loads due to the asperities within the contact. For instance, the minimum
film varies from 0.3 to 0.43 µm for SAE 0W20 and SAE 15W40 accordingly at a low sliding
speed of 0.5 m/s.
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Coated cylinder liner surfaces have also a great focus on piston ring tribology. For this
reason, the effect of the Nickel Nanocomposite (NNC) coated cylinder was investigated
in the current analysis. Data were provided by Dolatabadi et al. [15]. Figure 6 shows
the variation of the friction coefficient using the multi-variable, 2nd-order polynomial
regression model for all coated piston rings lubricated with SAE 0W20, 5W30 and 15W40.
The generated surfaces are also in well conformance with the analytical predictions. In the
case of SAE 15W40, the regression model is expressed by Equation (34) with R2 = 0.97
and S = 0.010, which means 97% accuracy of predicting the corresponding results with an
average standard error of 0.010. In the case of SAE 5W30, the equation of the prediction
model for the coefficient of friction is defined as (35) with R2 = 0.96 and S = 0.009, which
means 96% accuracy in prediction of the actual coefficient of friction for the contact with
an average standard error of 0.009. Finally, in the case of SAE 0W20, the regression model
is given by Equation (36) with R2 = 0.95 and S = 0.008 or 95% accurate prediction for the
friction coefficient in terms of sliding velocity and Young’s modulus of the coating with an
average standard error of 0.008. This type of cylinder liner is more rough than uncoated.
Thus, the values of the friction coefficient are higher than those of the uncoated case. In
more details, in the case of a rough steel ring, the friction coefficient varies from 0.12 to 0.02
for SAE 15W40 and an uncoated cylinder, while the friction coefficient changes from 0.19 to
0.047 using an NNC-coated cylinder. An increment of 33.3% is obvious. Using the NNC
cylinder liner, the smoother TiAlN coatings showed better friction coefficients ranging from
0.17 to 0.005 for SAE 15W40 and from 0.18 to 0.04 but not lower using an uncoated cylinder.
This can be explained owing to the cylinder surface morphology and high roughness.
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SAE 5W30, and SAE 15W40 for coated piston rings with an NNC cylinder liner.

For comparison purposes, the SAE 15W40 dataset of the NNC-coated cylinder was
introduced to Matlab’s Regression Learner tool. A quadratic SVM Machine Learning model
was trained using 80% of the values, and a cross-validation procedure was followed for
k = 5 randomly chosen partitions of the original dataset. The graphical representation
of the results is shown in Figure 7. The quadratic SVM model provided a coefficient of
determination R2 = 0.96 which is lower than the R2 = 0.97 provided by the 2nd order
polynomial regression model developed by the authors. The regression model shows 1%
better accuracy in predicting the friction coefficient and at the same time is easier to apply
and interpret. As a result, it is suggested as the most suitable ML model for this specific
investigation.

The results for the pivoted pad thrust bearing are summarized in Figure 8. The data
points represent the analytical results with the blue marks referring to the results of SAE 30,
red marks referring to the results of SAE 10W40 and yellow marks referring to AWS 100.
Accordingly, the generated surfaces form the graphical representations of the regression
models generated and compared for all the studied cases. The coefficient of friction is used
in the y axis as a response value, while the first predictor appears in the x axis, sliding
velocity, and the second predictor appears in the z axis, Young’s modulus, which in fact
represents the various coatings examined for the current study. In the case of SAE 30, the
regression model in given by Equation (37) with R2 = 0.89 and S = 0.017; this means 89%
accuracy of predicting the corresponding results with an average deviation of 0.017 units.
Similarly, in the case of SAE 10W40, the equation of the prediction model for the coefficient
of friction is (38) with R2 = 0.90 and S = 0.015, which means 90% accuracy in prediction
of the actual coefficient of friction for the contact with an average error of 0.015 for the
estimation. Finally, in the case of AWS 100, the regression model is given by Equation (39)
with R2 = 0.85 and S = 0.021 or 85% accurate prediction for the friction coefficient in terms
of sliding velocity and Young’s modulus of the coating with an average deviation from the
observations of 0.021.
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10W40, and AWS 100.

It can be easily noted that AWS 100 presents the highest coefficient of friction values
while SAE 10W40 presents the lowest in the same operating conditions. This is explained by
the fact that the sliding velocities are really low (0.5 to 5 m/s), and the load is high enough
(7000 N) to keep the conjunction in mixed lubrication regime. As a result, the boundary
friction has a clear effect on the final values of the friction coefficient. To add to that, AWS
100 and SAE 30 are thinner lubricants with lower viscosity values, while SAE 10W40 has
the highest viscosity values in the same operating conditions. When asperities come into
contact, the thicker lubricant SAE 10W40 provides better lubrication for the tribo-couple,
reducing the final coefficient of friction in comparison to the thinner SAE 30 and AWS 100.

In terms of Young’s modulus, the highest values for the friction coefficient are noted
at 200 GPa, which is a number that represents the steel uncoated pad, regardless of the
lubricant tested. Similarly, high friction coefficient values are observed for 250 GPa, which
is the Young’s modulus of TiN coating followed by the ones in 400 GPa where the CrN
coating is represented. At the same time, lower friction coefficient values are observed at
291 GPa that represent the TiAlN, and the lowest values of all, regardless of the lubricant
examined, are noted for a Young’s modulus equal to 300 GPa, which represents the DLC
coating. This behavior is explained by the roughness of the surfaces examined. The steel
uncoated pad is the roughest of all, and that is why it demonstrated the highest friction
coefficient values. On the other hand, TiAlN and DLC are the coatings with the lowest
surface roughness values that lead to the lowest friction coefficient values accordingly.

For comparison purposes, the AWS 100 dataset was introduced to Matlab’s Regression
Learner tool. A quadratic SVM machine learning model was trained using 80% of the
values, and a cross-validation procedure was followed for k = 5 randomly chosen partitions
of the original dataset. The graphical representation of the results is shown in Figure 9. The
quadratic SVM model provided a coefficient of determination R2 = 0.79, which is lower
than R2 = 0.85 provided by the 2nd-order polynomial regression model developed by the
authors. This is a clear indication that the 2nd-order polynomial regression model has 6%
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better accuracy in predicting the friction coefficient values for the pivoted pad bearing in
the case of AWS 100 examined and is definitely preferred to the quadratic SVM model.
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5. Conclusions

The original contributions covered in the present study are summarized as follows:

i. Smooth TiN2 and TiAlN coatings proved lower friction coefficients in piston ring
conjunction for both cylinder liners. The NNC cylinder liner has shown higher
friction coefficients of 33.3% than the uncoated liner for all studied coated piston
rings. This can be explained owing to the surface roughness properties of the
contact. Practically, the ring durability can be enhanced while the frictional losses
become higher. Thus, the topography of these coatings is important to improve its
tribological performance. For example, surface textures can lead to better friction
results as it is studied by Akbarzadeh and Khonsari [14].



Coatings 2022, 12, 704 21 of 24

ii. SAE 10W40 provided better lubrication and the lowest friction coefficient values for
the pivoted pad thrust bearing compared to SAE 30 and AWS 100, which are much
thinner oils regardless of the coating applied. The DLC coating, having the least
roughness of all, showed better tribological performance.

iii. In both tribological couples, the 2nd-order polynomial regression models were
found to be more accurate in predicting the friction coefficient as well as easier to
apply and interpret. As a result, they are suggested to be more suitable for this
investigation in comparison to the quadratic SVM models developed in Matlab’s
Regression Learner tool.

The study can be further improved using experimental predictions. It would be useful
to determine the wear and hardness of the coated surfaces with the inclusion of nanopar-
ticles at high temperatures for both sliding contacts. Additionally, the effects of the flow
factors that show how the roughness obstructs the flow between surfaces in proximity,
and the deformations on the generated results can be investigated as well. Variations in
the input data would provide improved complexity for the models. Finally, the investi-
gation of more tribo-contacts and comparison with other Machine Learning algorithms
(decision trees, neural networks) would be of great importance for the generalization of the
application. These issues are the focus of ongoing research.
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Nomenclature

A nominal contact area
Ac asperity contact area
b ring face-width contact
bcr critical length along the ring face-width contact
B pad face width
c ring curvature
dtb thrust bearing diameter
E Young’s modulus of elasticity
E* equivalent Young’s modulus of elasticity
F applied load
ftot total friction
fv viscous friction
fb boundary friction
F5/2, F2 statistical functions
h lubricant film thickness
hcr critical film thickness
ho minimum film thickness
h1 inlet film thickness
hs ring face-width
k Vogel parameter for describing lubricant viscosity variation with temperature
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K convergence ration
L lateral length
ph hydrodynamic pressure
pin inlet pressure at the piston ring conjunction
pout outlet pressure at the piston ring conjunction
r radius of the ring curvature
Ra average roughness
S standard error of the estimate
M, N input variables
U sliding velocity
Wtot total load carrying capacity
Wc load share by the asperities
Wh load carried by the lubricant film
Greek symbols
ε damping coefficient
ζ surface density of asperity peaks
θ1, θ2 Vogel parameters for lubricant viscosity variation with temperature
θav (average) lubricant temperature
κ average asperity tip radius

λs Stribeck oil film parameter
(

λs =
ho
σ

)
µ lubricant dynamic viscosity
µasp coefficient of boundary shear strength
ν Poisson ratio
σ root mean square roughness value of the studied tribo-pair
Σ parameter for convergence criterion
τ viscous shear stress
τo Eyring shear stress of the lubricant film
Superscripts
n iteration step
Subscripts
asp asperity
b boundary
cr critical
c contact
h hydrodynamic
l liner
p pad
r ring
rot rotor
s shape
S Stribeck
tb thrust bearing
tot total
v viscous
Abbreviations
AI Artificial Intelligence
AFM Atomic Force Microscope
ANN Artificial Neural Network
CFD Computational Fluid Dynamics
DLC Diamond-Like Carbon
FDM Finite Difference Method
ML Machine Learning
NEDC New European Drive Cycle
RUL Remaining Useful Life
SVR Support Vector Regression
SVM Support Vector Machine
TDC Top Dead Center
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