Effect of Intraoral Humidity on Dentin Bond Strength of Two Universal Adhesives: An In Vitro Preliminary Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Development of Environmental Chamber
2.2. Bonding Procedures
2.3. Specimen Preparation for µTBS Test
2.4. Microtensile Bond Strength Testing
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
- The bonding performance of adhesive systems depends on the humidity settings;
- Increased RH exerts a detrimental effect on the bond strength of the HEMA-containing adhesive tested. However, this phenomenon was not observed for the HEMA-free adhesive tested;
- Further research in this area is needed to investigate different adhesive systems, temperatures and humidity settings.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hardan, L.; Bourgi, R.; Kharouf, N.; Mancino, D.; Zarow, M.; Jakubowicz, N.; Haikel, Y.; Cuevas-Suárez, C. Bond Strength of Universal Adhesives to Dentin: A Systematic Review and Meta-Analysis. Polymers 2021, 13, 814. [Google Scholar] [CrossRef] [PubMed]
- Frassetto, A.; Breschi, L.; Turco, G.; Marchesi, G.; Di Lenarda, R.; Tay, F.; Pashley, D.H.; Cadenaro, M. Mechanisms of degradation of the hybrid layer in adhesive dentistry and therapeutic agents to improve bond durability—A literature review. Dent. Mater. 2015, 32, e41–e53. [Google Scholar] [CrossRef] [PubMed]
- Bourgi, R.; Daood, U.; Bijle, M.; Fawzy, A.; Ghaleb, M.; Hardan, L. Reinforced Universal Adhesive by Ribose Crosslinker: A Novel Strategy in Adhesive Dentistry. Polymers 2021, 13, 704. [Google Scholar] [CrossRef]
- Hardan, L.; Bourgi, R.; Cuevas-Suárez, C.; Zarow, M.; Kharouf, N.; Mancino, D.; Villares, C.; Skaba, D.; Lukomska-Szymanska, M. The Bond Strength and Antibacterial Activity of the Universal Dentin Bonding System: A Systematic Review and Meta-Analysis. Microorganisms 2021, 9, 1230. [Google Scholar] [CrossRef]
- Bourgi, R.; Hardan, L.; Rivera-Gonzaga, A.; Cuevas-Suárez, C.E. Effect of warm-air stream for solvent evaporation on bond strength of adhesive systems: A systematic review and meta-analysis of in vitro studies. Int. J. Adhes. Adhes. 2020, 105, 102794. [Google Scholar] [CrossRef]
- Hardan, L.; Lukomska-Szymanska, M.; Zarow, M.; Cuevas-Suárez, C.E.; Bourgi, R.; Jakubowicz, N.; Sokolowski, K.; D’Arcangelo, C. One-Year Clinical Aging of Low Stress Bulk-Fill Flowable Composite in Class II Restorations: A Case Report and Literature Review. Coatings 2021, 11, 504. [Google Scholar] [CrossRef]
- Perdigão, J. Current perspectives on dental adhesion: (1) Dentin adhesion—not there yet. Jpn. Dent. Sci. Rev. 2020, 56, 190–207. [Google Scholar] [CrossRef] [PubMed]
- Breschi, L.; Maravic, T.; Cunha, S.R.; Comba, A.; Cadenaro, M.; Tjäderhane, L.; Pashley, D.H.; Tay, F.R.; Mazzoni, A. Dentin bonding systems: From dentin collagen structure to bond preservation and clinical applications. Dent. Mater. 2017, 34, 78–96. [Google Scholar] [CrossRef] [Green Version]
- Sofan, E.; Sofan, A.; Palaia, G.; Tenore, G.; Romeo, U.; Migliau, G. Classification review of dental adhesive systems: From the IV generation to the universal type. Ann. Stomatol. 2017, 8, 1–17. [Google Scholar] [CrossRef]
- Zecin-Deren, A.; Sokolowski, J.; Szczesio-Wlodarczyk, A.; Piwonski, I.; Lukomska-Szymanska, M.; Lapinska, B. Multi-Layer Application of Self-Etch and Universal Adhesives and the Effect on Dentin Bond Strength. Molecules 2019, 24, 345. [Google Scholar] [CrossRef] [Green Version]
- Perdigão, J.; Araujo, E.; Ramos, R.Q.; Gomes, G.; Pizzolotto, L. Adhesive dentistry: Current concepts and clinical considerations. J. Esthet. Restor. Dent. 2020, 33, 51–68. [Google Scholar] [CrossRef] [PubMed]
- Kharouf, N.; Ashi, T.; Eid, A.; Maguina, L.; Zghal, J.; Sekayan, N.; Bourgi, R.; Hardan, L.; Sauro, S.; Haikel, Y.; et al. Does Adhesive Layer Thickness and Tag Length Influence Short/Long-Term Bond Strength of Universal Adhesive Systems? An In-Vitro Study. Appl. Sci. 2021, 11, 2635. [Google Scholar] [CrossRef]
- Sugimura, R.; Tsujimoto, A.; Hosoya, Y.; Fischer, N.; Barkmeier, W.W.; Takamizawa, T.; Latta, M.A.; Miyazaki, M. Surface moisture influence on etch-and-rinse universal adhesive bonding. Am. J. Dent. 2019, 32, 33–38. [Google Scholar] [PubMed]
- Papadogiannis, D.; Dimitriadi, M.; Zafiropoulou, M.; Gaintantzopoulou, M.-D.; Eliades, G. Universal Adhesives: Setting Characteristics and Reactivity with Dentin. Materials 2019, 12, 1720. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moritake, N.; Takamizawa, T.; Ishii, R.; Tsujimoto, A.; Barkmeier, W.; Latta, M.; Miyazaki, M. Effect of Active Application on Bond Durability of Universal Adhesives. Oper. Dent. 2019, 44, 188–199. [Google Scholar] [CrossRef]
- Häfer, M.; Schneider, H.; Rupf, S.; Busch, I.; Fuchß, A.; Merte, I.; Jentsch, H.; Haak, R.; Merte, K. Experimental and Clinical Evaluation of a Self-etching and an Etch-and-Rinse Adhesive System. J. Adhes. Dent. 2013, 15, 275–286. [Google Scholar] [CrossRef]
- Saraiva, L.O.; Aguiar, T.R.; Costa, L.; Cavalcanti, A.N.; Giannini, M.; Mathias, P. Influence of Intraoral Temperature and Relative Humidity on the Dentin Bond Strength: An in Situ Study. J. Esthet. Restor. Dent. 2014, 27, 92–99. [Google Scholar] [CrossRef]
- Mutluay, M.M.; Yahyazadehfar, M.; Ryou, H.; Majd, H.; Do, D.; Arola, D. Fatigue of the resin–dentin interface: A new approach for evaluating the durability of dentin bonds. Dent. Mater. 2013, 29, 437–449. [Google Scholar] [CrossRef] [Green Version]
- Kameyama, A.; Asami, M.; Noro, A.; Abo, H.; Hirai, Y.; Tsunoda, M. The effects of three dry-field techniques on intraoral temperature and relative humidity. J. Am. Dent. Assoc. 2011, 142, 274–280. [Google Scholar] [CrossRef]
- Pinzon, L.M.; Powers, J.M.; O’Keefe, K.L.; Dusevish, V.; Spencer, P.; Marshall, G.W. Effect of mucoprotein on the bond strength of resin composite to human dentin. Odontology 2011, 99, 119–128. [Google Scholar] [CrossRef] [Green Version]
- Sinjari, B.; Rexhepi, I.; Santilli, M.; D’addazio, G.; Chiacchiaretta, P.; Di Carlo, P.; Caputi, S. The Impact of COVID-19 Related Lockdown on Dental Practice in Central Italy—Outcomes of A Survey. Int. J. Environ. Res. Public Health 2020, 17, 5780. [Google Scholar] [CrossRef] [PubMed]
- Frankenberger, R.; Van Meerbeek, B. Editorial: Rubber-dam—A blessing not only in the COVID-19 era. J. Adhes. Dent. 2021, 23, 3. [Google Scholar] [PubMed]
- Wang, Y.; Li, C.; Yuan, H.; Wong, M.C.; Zou, J.; Shi, Z.; Zhou, X. Rubber dam isolation for restorative treatment in dental patients. Cochrane Database Syst. Rev. 2016, 9, CD009858. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abuzenada, B.M. Attitude of dental students towards the rubber dam use in operative dentistry. J. Pharm. Bioallied Sci. 2021, 13, 637. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, I.A. Rubber dam usage for endodontic treatment: A review. Int. Endod. J. 2009, 42, 963–972. [Google Scholar] [CrossRef]
- Miao, C.; Yang, X.; Wong, M.C.; Zou, J.; Zhou, X.; Li, C.; Wang, Y. Rubber dam isolation for restorative treatment in dental patients. Cochrane Database Syst. Rev. 2021, 2021, CD009858. [Google Scholar] [CrossRef]
- Amsler, F.; Peutzfeldt, A.; Lussi, A.; Flury, S. Long-Term Bond Strength of Self-Etch Adhesives to Normal and Artificially Eroded Dentin: Effect of Relative Humidity and Saliva Contamination. J. Adhes. Dent. 2017, 19, 169–176. [Google Scholar] [CrossRef]
- Amsler, F.; Peutzfeldt, A.; Lussi, A.; Flury, S. Bond Strength of Resin Composite to Dentin with Different Adhesive Systems: Influence of Relative Humidity and Application Time. J. Adhes. Dent. 2015, 17, 249–256. [Google Scholar] [CrossRef]
- Bicalho, A.A.; de Souza, S.J.B.; de Rosatto, C.M.P.; Tantbirojn, D.; Versluis, A.; Soares, C.J. Effect of temperature and humidity on post-gel shrinkage, cusp deformation, bond strength and shrinkage stress—Construction of a chamber to simulate the oral environment. Dent. Mater. 2015, 31, 1523–1532. [Google Scholar] [CrossRef]
- Jang, J.-H.; Jeon, B.-K.; Mo, S.Y.; Park, M.; Choi, D.; Choi, K.-K.; Kim, D.-S. Effect of various agitation methods on adhesive layer formation of HEMA-free universal dentin adhesive. Dent. Mater. J. 2019, 38, 101–106. [Google Scholar] [CrossRef] [Green Version]
- Yamauchi, K.; Tsujimoto, A.; Jurado, C.A.; Shimatani, Y.; Nagura, Y.; Takamizawa, T.; Barkmeier, W.W.; Latta, M.A.; Miyazaki, M. Etch-and-rinse vs self-etch mode for dentin bonding effectiveness of universal adhesives. J. Oral Sci. 2019, 61, 549–553. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spencer, P.; Ye, Q.; Park, J.; Topp, E.M.; Misra, A.; Marangos, O.; Wang, Y.; Bohaty, B.S.; Singh, V.; Sene, F.; et al. Adhesive/Dentin Interface: The Weak Link in the Composite Restoration. Ann. Biomed. Eng. 2010, 38, 1989–2003. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lynch, C.D.; McConnell, R.J. Attitudes and use of rubber dam by Irish general dental practitioners. Int. Endod. J. 2007, 40, 427–432. [Google Scholar] [CrossRef] [PubMed]
- Patel, S.; Hamer, S. A simple guide to using dental dam. Br. Dent. J. 2021, 230, 644–650. [Google Scholar] [CrossRef]
- Asmussen, E.; Peutzfeldt, A. The influence of relative humidity on the effect of dentin bonding systems. J. Adhes. Dent. 2001, 3, 123–127. [Google Scholar] [PubMed]
- Peutzfeldt, A.; Asmussen, E. Adhesive systems: Effect on bond strength of incorrect use. J. Adhes. Dent. 2002, 4, 233–242. [Google Scholar]
- Peutzfeldt, A.; Vigild, M. A survey of the use of dentin-bonding systems in Denmark. Dent. Mater. 2001, 17, 211–216. [Google Scholar] [CrossRef]
- Wang, R.; Shi, Y.; Li, T.; Pan, Y.; Cui, Y.; Xia, W. Adhesive interfacial characteristics and the related bonding performance of four self-etching adhesives with different functional monomers applied to dentin. J. Dent. 2017, 62, 72–80. [Google Scholar] [CrossRef]
- Chen, C.; Niu, L.-N.; Xie, H.; Zhang, Z.-Y.; Zhou, L.-Q.; Jiao, K.; Chen, J.-H.; Pashley, D.; Tay, F. Bonding of universal adhesives to dentine—Old wine in new bottles? J. Dent. 2015, 43, 525–536. [Google Scholar] [CrossRef] [Green Version]
- Shafiei, F.; Akbarian, S. Microleakage of Nanofilled Resin-modified Glass-ionomer/Silorane- or Methacrylate-based Composite Sandwich Class II Restoration: Effect of Simultaneous Bonding. Oper. Dent. 2014, 39, E22–E30. [Google Scholar] [CrossRef]
- Bedran-Russo, A.; Leme-Kraus, A.A.; Vidal, C.M.; Teixeira, E. An Overview of Dental Adhesive Systems and the Dynamic Tooth–Adhesive Interface. Dent. Clin. N. Am. 2017, 61, 713–731. [Google Scholar] [CrossRef] [PubMed]
- Alex, G. Universal adhesives: The next evolution in adhesive dentistry? Compend. Contin. Educ. Dent. 2015, 36, 15–26. [Google Scholar] [PubMed]
- Junior, M.H.S.E.S.; Carneiro, K.G.K.; Lobato, M.F.; Souza, P.D.A.R.S.E.; De Góes, M.F. Adhesive systems: Important aspects related to their composition and clinical use. J. Appl. Oral Sci. 2010, 18, 207–214. [Google Scholar] [CrossRef] [PubMed]
- Van Landuyt, K.L.; De Munck, J.; Snauwaert, J.; Coutinho, E.; Poitevin, A.; Yoshida, Y.; Inoue, S.; Peumans, M.; Suzuki, K.; Lambrechts, P.; et al. Monomer-Solvent Phase Separation in One-step Self-etch Adhesives. J. Dent. Res. 2005, 84, 183–188. [Google Scholar] [CrossRef]
- Sezinando, A.; Luque-Martinez, I.; Muñoz, M.A.; Reis, A.; Loguercio, A.D.; Perdigão, J. Influence of a hydrophobic resin coating on the immediate and 6-month dentin bonding of three universal adhesives. Dent. Mater. 2015, 31, e236–e246. [Google Scholar] [CrossRef]
- Saeed, N.A.; Tichy, A.; Kuno, Y.; Hosaka, K.; Tagami, J.; Nakajima, M. Effect of Surface Moisture on Bur-cut Dentin on Bonding of HEMA-free and HEMA-containing Universal Adhesives with or without Methacrylamide Monomer. J. Adhes. Dent. 2021, 23, 327–334. [Google Scholar] [CrossRef]
- Gutiérrez, M.F.; Alegría-Acevedo, L.F.; Méndez-Bauer, L.; Bermudez, J.; Dávila-Sánchez, A.; Buvinic, S.; Hernández-Moya, N.; Reis, A.; Loguercio, A.D.; Farago, P.V.; et al. Biological, mechanical and adhesive properties of universal adhesives containing zinc and copper nanoparticles. J. Dent. 2019, 82, 45–55. [Google Scholar] [CrossRef]
- Van Landuyt, K.L.; Snauwaert, J.; De Munck, J.; Peumans, M.; Yoshida, Y.; Poitevin, A.; Coutinho, E.; Suzuki, K.; Lambrechts, P.; Van Meerbeek, B. Systematic review of the chemical composition of contemporary dental adhesives. Biomaterials 2007, 28, 3757–3785. [Google Scholar] [CrossRef]
- Pashley, D.H.; Agee, K.A.; Nakajima, M.; Tay, F.R.; Carvalho, R.M.; Terada, R.S.S.; Harmon, F.J.; Lee, W.-K.; Rueggeberg, F.A. Solvent-induced dimensional changes in EDTA-demineralized dentin matrix. J. Biomed. Mater. Res. 2001, 56, 273–281. [Google Scholar] [CrossRef]
- Kumagai, R.Y.; Hirata, R.; Pereira, P.N.R.; Reis, A.F. Moist vs over-dried etched dentin: FE-SEM/TEM and bond strength evaluation of resin-dentin interfaces produced by universal adhesives. J. Esthet. Restor. Dent. 2019, 32, 325–332. [Google Scholar] [CrossRef]
- Giacomini, M.C.; Scaffa, P.M.C.; Gonçalves, R.S.; Zabeu, G.S.; Vidal, C.D.M.P.; Carrilho, M.R.D.O.; Honório, H.M.; Wang, L. Profile of a 10-MDP-based universal adhesive system associated with chlorhexidine: Dentin bond strength and in situ zymography performance. J. Mech. Behav. Biomed. Mater. 2020, 110, 103925. [Google Scholar] [CrossRef] [PubMed]
- Yoshihara, K.; Nagaoka, N.; Okihara, T.; Kuroboshi, M.; Hayakawa, S.; Maruo, Y.; Nishigawa, G.; De Munck, J.; Yoshida, Y.; Van Meerbeek, B. Functional monomer impurity affects adhesive performance. Dent. Mater. 2015, 31, 1493–1501. [Google Scholar] [CrossRef]
- Cuevas-Suárez, C.E.; Ramos, T.S.; Rodrigues, S.B.; Collares, F.M.; Zanchi, C.H.; Lund, R.G.; da Silva, A.F.; Piva, E. Impact of shelf-life simulation on bonding performance of universal adhesive systems. Dent. Mater. 2019, 35, e204–e219. [Google Scholar] [CrossRef]
- Iliev, G.; Hardan, L.; Kassis, C.; Bourgi, R.; Cuevas-Suárez, C.E.; Lukomska-Szymanska, M.; Mancino, D.; Haikel, Y.; Kharouf, N. Shelf Life and Storage Conditions of Universal Adhesives: A Literature Review. Polymers 2021, 13, 2708. [Google Scholar] [CrossRef] [PubMed]
- Moszner, N.; Salz, U.; Zimmermann, J. Chemical aspects of self-etching enamel–dentin adhesives: A systematic review. Dent. Mater. 2005, 21, 895–910. [Google Scholar] [CrossRef]
- Khare, J.M.; Dahiya, S.; Gangil, B.; Ranakoti, L.; Sharma, S.; Huzaifah, M.R.M.; Ilyas, R.A.; Dwivedi, S.P.; Chattopadhyaya, S.; Kilinc, H.C.; et al. Comparative Analysis of Erosive Wear Behaviour of Epoxy, Polyester and Vinyl Esters Based Thermosetting Polymer Composites for Human Prosthetic Applications Using Taguchi Design. Polymers 2021, 13, 3607. [Google Scholar] [CrossRef]
- Jacquot, B.; Durand, J.-C.; Farge, P.; Valcarcel, J.; De Périère, D.D.; Cuisinier, F. Influence of Temperature and Relative Humidity on Dentin and Enamel Bonding: A Critical Review of the Literature. Part 1. Laboratory Studies. J. Adhes. Dent. 2012, 14, 433–446. [Google Scholar] [CrossRef]
- Plasmans, P.; Creugers, N.; Hermsen, R.; Vrijhoef, M. Intraoral humidity during operative procedures. J. Dent. 1994, 22, 89–91. [Google Scholar] [CrossRef]
Adhesive Used | Classification | Composition | Manufacturer |
---|---|---|---|
Prime&Bond Universal (PBU) | Mild pH = 2.5 | 10-MDP, PENTA, isopropanol, water, photoinitiator, Bi-and multifunctional acrylate | Dentsply DeTrey GmbH, Konstanz, Germany |
Scotchbond Universal (SBU) | Mild pH = 2.7 | 10-MDP, 2-HEMA, Bis-GMA, DCDMA, MPTMS, VP-copolymer, fumed silica, ethanol, water, photoinitiators | 3M ESPE, St. Paul, MN, USA |
Humidity Used | PBU | SBU |
---|---|---|
50% RH | PBU RH:50% | SBU RH:50% |
90% RH | PBU RH:90% | SBU RH:90% |
Humidity Used | PBU | SBU |
---|---|---|
50% RH | 22.146 ± 4.170 a | 28.414 ± 12.888 b |
90% RH | 19.613 ± 5.586 a | 18.800 ± 5.552 c |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dabbagh, S.; Hardan, L.; Kassis, C.; Bourgi, R.; Devoto, W.; Zarow, M.; Jakubowicz, N.; Ghaleb, M.; Kharouf, N.; Dabbagh, M.; et al. Effect of Intraoral Humidity on Dentin Bond Strength of Two Universal Adhesives: An In Vitro Preliminary Study. Coatings 2022, 12, 712. https://doi.org/10.3390/coatings12050712
Dabbagh S, Hardan L, Kassis C, Bourgi R, Devoto W, Zarow M, Jakubowicz N, Ghaleb M, Kharouf N, Dabbagh M, et al. Effect of Intraoral Humidity on Dentin Bond Strength of Two Universal Adhesives: An In Vitro Preliminary Study. Coatings. 2022; 12(5):712. https://doi.org/10.3390/coatings12050712
Chicago/Turabian StyleDabbagh, Sarah, Louis Hardan, Cynthia Kassis, Rim Bourgi, Walter Devoto, Maciej Zarow, Natalia Jakubowicz, Maroun Ghaleb, Naji Kharouf, Mouhammad Dabbagh, and et al. 2022. "Effect of Intraoral Humidity on Dentin Bond Strength of Two Universal Adhesives: An In Vitro Preliminary Study" Coatings 12, no. 5: 712. https://doi.org/10.3390/coatings12050712
APA StyleDabbagh, S., Hardan, L., Kassis, C., Bourgi, R., Devoto, W., Zarow, M., Jakubowicz, N., Ghaleb, M., Kharouf, N., Dabbagh, M., Arbildo-Vega, H. I., & Lukomska-Szymanska, M. (2022). Effect of Intraoral Humidity on Dentin Bond Strength of Two Universal Adhesives: An In Vitro Preliminary Study. Coatings, 12(5), 712. https://doi.org/10.3390/coatings12050712