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Abstract: Fe60 laser cladding coating was prepared on the surface of 45 steel with the assistance
of alternating magnetic field–mechanical vibration coupling field. The XRD results show that the
coating is mainly composed of solid solution Ni-Cr-Fe, (Fe, Ni), and Fe-Cr and also contains a certain
amount of Cr2Fe14C hard phase. In the process of laser cladding, the chemical composition of the
coating is not affected by the coupling field. Under the interaction of the coupling field, the liquid
metal in the molten pool is fully stirred; the heat diffusion in the molten pool is accelerated; the
temperature gradient in front of the solid–liquid interface decreases; and the large-size dendrites
are broken. Those contribute to the grains being refined significantly in the coating. In addition, the
content of Cr2Fe14C hard phase in the coating is increased under the coupling field. The maximum
microhardness of the coating can reach 702 HV0.2, and the corrosion rate of the coating is the lowest
under the coupling field, while the weight loss of the 45 steel surface with the action of the coupling
field is 68.9% lower than that without coupling field. The laser cladding technology assisted by
alternating magnetic field–mechanical vibration coupling field can promote the development of a
wear-resistant coating field.

Keywords: laser cladding; alternating magnetic field–mechanical vibration coupling field;
Fe60 coating; microstructure; wear resistance

1. Introduction

Laser cladding is an effective technology for improving strength, hardness, wear
resistance, and other surface properties of materials [1–3]. However, the melting and
solidification of alloy powder and substrate are quickly completed during the process
of laser cladding, and the difference in the chemical composition of alloy powder and
substrate leads to the unsatisfactory properties of the cladding layer, such as high porosity,
cracking, and composition dilution [4–6]. These matters seriously restrict the preparation
of high-quality laser cladding layers.

To improve the quality of the laser cladding layers, the researchers attempt to introduce
an external energy field into the process of laser cladding (for example, magnetic field
and vibration field) [4,7–9]. Much research proves that the external vibration field can
provide excitation force for the molten pool which breaks and refines the primary crystal
in the molten pool crystallization process and provides more nucleation particles for the
unsolidified metal liquid. Importantly, the effect on the microstructure, such as grain
shape and size, dendrite growth direction, and precipitation, can be achieved. Therefore,
the microstructure and performance of the coating are improved apparently [7,10–13]. In
addition, the hard phase can be formed by the combination of carbon and Cr or other
elements in the iron-based alloy powder during the process of laser cladding, and, thus,
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the wear resistance of the coating is enhanced [14,15]. Some works show that the grains are
refined and that the depth of the molten pool is controlled by the laser surface treatment
which is assisted by the ultrasonic vibration field [16,17]. In addition, the magnetic field is
also an effective external energy field which contributes to the improvement of the quality
of laser cladding layers in the research of laser cladding assisted by the electromagnetic field,
which contains three forms: single electric field, single magnetic field, and electromagnetic
composite field. The effects of a single magnetic field-assisted laser cladding layer can be
divided into a steady magnetic field and alternating/rotating magnetic field [18]. Lorentz
force can be generated in the molten pool under the influence of electric field and magnetic
field. The Lorentz force in the steady magnetic field is the resistance to convection in the
molten pool, which can restrain ripples on the molten pool surface [19,20]. In order to make
up for the deficiency of a single field-assisted laser cladding, the coating structure can be
optimized by a coupled field-assisted laser cladding. One way is with the laser cladding
assisted by coupled field with electric and magnetic [18,21]. In addition, the laser cladding
assisted by coupled field with mechanical vibration and alternating magnetic is also an
efficient approach; some research has shown that the dendrites are broken and the free
growth of dendrites is hindered by the vibration field, which reduces the size of the grains.
Meanwhile, the pinch effect generated by the magnetic field can also further refine the
grains. Therefore, the mechanical properties of the alloy are improved [22–24]. In addition,
the inhibition of the solute diffusion and the decrease of the component dilution rates can
be achieved by a steady magnetic field [18,25]. However, there are few reports on the laser
cladding assisted by coupled field with mechanical vibration and magnetic.

Based on this, the laser cladding coating assisted by the coupled field with vibration
and steady magnetic was investigated in this work. According to the characteristics of
crystal growth during solidification and crystallization of laser cladding pool, a coupled
fields device that integrated the advantages of mechanical vibration and the magnetic field
is designed. With this device, Fe60 alloy coating was prepared on the surface of 45 steel by
coupled field-assisted laser cladding. The structure, composition, and friction resistance of
the coating were analyzed. Finally, the mechanism of the effect of grains in laser cladding
coating caused by different field-assisted types was explained.

2. Experiment
2.1. Materials and Methods

The 45 steel (Zhongxie Metal Materials Co., Ltd., Dongguan, China) with dimen-
sions of 10 mm × 100 mm × 10 mm was worked as the substrates. The substrates were
cleaned by ultrasonic wave with acetone and anhydrous alcohol to remove oil stains
on the surface. The cladding material is Fe60 powder with a 60–150 mesh particle size
(Jinnuo Welding Materials Co., Ltd., Nanjing, China), and the element content of the
45 steel and Fe60 powder are shown in Table 1. The schematic diagram of laser cladding
experimental equipment is shown in Figure 1. The laser source was generated by the Gs-
TFL-6000 cross-flow multi-mode CO2 laser (Gs-TFL-6000, Golden sky laser system Co., Ltd.,
Wuhan, China). The mechanical field is generated by an electromagnetic vertical vibrator
(Gaoxiang Machinery Equipment Co., Ltd., Dongguan, China). The magnetic field generat-
ing device is a self-made device, as shown in Figure S1. During the laser cladding process,
the laser power was 4 kW; the defocusing ability was 25 mm; the spot diameter was 3 mm;
and the scanning speed was 400 mm/min. The parameters of assisted field during the
laser cladding are shown in Table 2, the sample of 1# represented the laser cladding which
was not applied with assisted field. The sample of 2# indicated that the assisted vibration
field with an amplitude of 3 mm and the vibration frequency of 100 Hz was applied during
the laser cladding process. The sample of 3# was assisted by a magnetic field with 0.8 T.
The sample of 4# was the sample that was assisted by coupled field with a vibration field
(3 mm) and magnetic field (0.8 T). During the experiment, nitrogen was selected as the
protective gas (purity 99.99%), and the gas flow was 15 L/h.
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Table 1. The element content of 45 steel and Fe60 powder.

Composition/wt.% C Si Ni W B Cr Fe

45 Steel 0.43 0.17 0.30 0 0 0 98.35
Fe60 4.0–4.5 2–3 4 to 6 2–3 1.5–2.5 24 to 30 Bal.
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Figure 1. Overall structure of coupled field-assisted laser cladding device.

Table 2. Comparison table of experimental schemes.

Sample 1# 2# 3# 4#

Magnetic field intensity (T) 0 0 0.8 0.8
Amplitude (mm) 0 3 0 3

2.2. Characterization

The phase structure of the coatings was measured by X-ray diffractometer (XRD,
Rigaku Corporation, MiniFlex 600, Osaka, Japan) equipped with Cu Kα radiation from
10 to 100◦ at a scan rate of 10◦·min−1. After polishing the sample, corrosion was carried
out in aqua regia. The microstructure and chemical composition of the coatings were
observed by field emission scanning electron microscope (SEM, Hitachi, SPM-S3400N,
Tokyo, Japan). Before observation, samples were polished and then treated by aqua regia
(HNO3:HCl = 1:3). The hardness of coatings was tested by a microhardness tester (Yanrun
Guangji Technology Co., Ltd., HRS-150, Shanghai, China). The loading and holding time
were 1.96 N and 15 s, respectively, and the hardness value was measured by the average
value of three points in the same horizontal position. A linear reciprocating wear testing
machine (Center for Tribology Inc., UMT-2, Campbell, CA, USA) was used to test the
friction and wear properties of the samples at room temperature. During the test, the
grinding ball was Al2O3, and the parameters were controlled at the load of 20 N, the stroke
of 5 mm, and the time of 20 min.
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3. Results and Discussion
3.1. Phase Constitution

The XRD patterns of the coating at different auxiliary fields are demonstrated in
Figure 2. It can be confirmed that the phase structure of the Fe60 laser cladding coating
is mainly composed of solid solution Ni-Cr-Fe, (Fe, Ni), and Fe-Cr, corresponding to the
degree of 44.6◦, 64.8◦, and 82.1◦, respectively. Meanwhile, the coating also contained
a certain amount of Cr2Fe14C hard phase. The results indicate that field-assisted laser
cladding is able to promote the diffusion of elements in the molten pool and enhance the
generation of hard phases.

Coatings 2022, 12, x FOR PEER REVIEW 4 of 10 
 

 

certain amount of Cr2Fe14C hard phase. The results indicate that field-assisted laser clad-

ding is able to promote the diffusion of elements in the molten pool and enhance the gen-

eration of hard phases.  

 

Figure 2. XRD patterns of coatings under different field-assisted types. 

3.2. Microstructure Evolution 

Figure 3 shows the microstructure of the Fe60 laser cladding coating assisted by dif-

ferent fields. The Figure 3a,b shows that the grains of coating are refined, indicating that 

the large grains are broken into small grains by mechanical vibration field assistance. In-

terestingly, the grains are also refined in Figure 3c, but the grain arrangement becomes 

disordered. This can be explained by the circular motion of the flowing metal driven by 

the Lorentz force induced by steady magnetic field. Under the action of high-energy laser 

beam irradiation, complex natural convection is exhibited in the melt, and the change of 

magnetic flux leads to an induced current in the molten pool so that the liquid metal be-

comes a charged conductor, and the charged liquid metal in the molten pool is bound to 

be affected by the Lorentz force. Lorentz force in the molten pool also plays a stirring role 

in the melt in the molten pool, resulting in the grains being refined significantly. Further-

more, under the coupled field-assisted mode with mechanical vibration field and steady 

magnetic field, the grains are further refined, and the grain arrangement becomes more 

disordered than the single vibration field assistance. 

 

Figure 3. The SEM of coatings under different field-assisted types, (a) 1#, (b) 2#, (c) 3#, (d) 4#. 

Figure 2. XRD patterns of coatings under different field-assisted types.

3.2. Microstructure Evolution

Figure 3 shows the microstructure of the Fe60 laser cladding coating assisted by
different fields. The Figure 3a,b shows that the grains of coating are refined, indicating
that the large grains are broken into small grains by mechanical vibration field assistance.
Interestingly, the grains are also refined in Figure 3c, but the grain arrangement becomes
disordered. This can be explained by the circular motion of the flowing metal driven by the
Lorentz force induced by steady magnetic field. Under the action of high-energy laser beam
irradiation, complex natural convection is exhibited in the melt, and the change of magnetic
flux leads to an induced current in the molten pool so that the liquid metal becomes a
charged conductor, and the charged liquid metal in the molten pool is bound to be affected
by the Lorentz force. Lorentz force in the molten pool also plays a stirring role in the melt
in the molten pool, resulting in the grains being refined significantly. Furthermore, under
the coupled field-assisted mode with mechanical vibration field and steady magnetic field,
the grains are further refined, and the grain arrangement becomes more disordered than
the single vibration field assistance.
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The EDS diagram of the coating is shown in Figure 4. Figure 4a is the microstructure
of the Fe60 laser cladding coating assisted without field, and Figure 4b is the microstructure
of the Fe60 laser cladding coating assisted by coupled field with mechanical vibration
field and steady magnetic field. It can be seen that the coatings consist of two parts, the
light grey area (ID) and dark grey area (DR). In addition, the elements in the coatings are
evenly distributed, indicating that the uniform distribution of coating is promoted by laser
cladding. The elemental content calculated by EDS is shown in Table 3. The Cr element
content is higher in ID, and meanwhile the contents of C, Fe, and Ni in DR are higher
than ID. Importantly, the coating of 4# has the highest C element, which indicates that the
content of hard phase is increased. A large amount of hard phase (Cr2Fe14C) is able to
enhance the wear resistance of the coating. Therefore, it can be speculated that the coupled
field can promote mass transfer in the molten pool to a certain extent, which contributes to
the diffusion of Fe, Cr, Ni, and C elements and, thus, promotes the formation of hard phase
of Cr2Fe14C.
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Table 3. EDS analysis results of coatings (at. %).

Assisted Field Element C Cr Fe Ni

1#
ID 15.82 17.94 55.9 0.31
DR 23.77 11.92 56.51 0.35

4#
ID 23.93 15.76 47.86 0.23
DR 26.66 10.77 53.35 0.31

3.3. Microhardness

Figure 5 shows the microhardness distribution of the Fe60 laser cladding coating. It
can be seen that the hardness of the coating without the field assistance is lower than that
of the coating with the field assistance, and the hardness decreases with the increase of
the distance from the top of the coating. The maximum hardness of the four samples is
624 HV0.2, 653 HV0.2, 659 HV0.2, and 702 HV0.2, respectively. The highest hardness occurs
in the laser cladding coating assisted by the coupled field with mechanical vibration field
and steady magnetic field. According to the Hall Petch equation [26–28], the hardness of
the coating increases as the average grain size decreases.:

σs = σ0 + Ksd−1/2 (1)

where σs and σ0 are the yield stress and lattice friction stress, Ks is positive constant of
yielding associated with the stress required to extend dislocation activity into adjacent
unyielded grains, and d is the average diameter of grains.
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At the same time, grain refinement increases the grain boundary area, contribut-
ing to the strength of coatings that are improved by the hindrance effect on dislocation.
Furthermore, the increase in hard phase (Cr2Fe14C) enhances the wear resistance of the
coating [14,15].
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3.4. Friction and Wear

As an important indicator of wear-resistance performance, the friction coefficients
of coatings with the different field-assisted types are demonstrated in Figure 6. The low
friction coefficient at the beginning is due to the incomplete contact between the coating
and the grinding ball, which results in an inaccurate result [29]. When the contact surface
changes from point contact to surface contact, the wear enters a stable stage. It can be
observed that after 650 s, the friction coefficient presents a stable trend, and the wear
mechanism changes from sharp wear to smooth wear. The coating without field assistance
shows a maximum friction coefficient, and the sample of 4# exhibits a minimum friction
coefficient. As shown in Figure 6b, the coating wear volume of the 1# is 5950 µm3, while the
coating of 4# is 1848 µm3, which reaches the minimum value. The Archard wear equation
is an equation derived from a simplified model of abrasive wear, and, although it does
not consider the factors such as work hardening and friction heat, it relates the wear rate
to engineering variables and mechanical properties of the material. The expression of
Archard’s wear equation [30] is:

Wv

S
= K

F
H

(2)

where Wv is the volume wear (µm3), S is the sliding distance (mm), F is the normal
load (N), H is the hardness of the wear material (HV), and K is the wear coefficient.
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According to the microhardness test, it can be concluded that the hardness is inversely
proportional to the wear quantity. Therefore, the experimental results are in good agreement
with Archard’s equation.

Figure 7 is the mechanism diagram of the effect of grains in laser cladding coating
caused by different field-assisted types. FL is Lorentz force; Fv is force generated by
vibration field; G is gravity. During the laser cladding process, the thermal convection in
the molten pool tungsten is performed by the laser beam, and the movement of molten
metal is driven by the thermal convection. The movement of molten metal promotes the
mixing of elements in the coating. When the laser cladding process is assisted by the
vibration field, the growing dendrites are broken, and the broken nuclei are brought to the
melt under the action of vibration and stirring to form a large number of nuclei. Meanwhile,
the stirring generated by the vibration also hinders the free growth of dendrites. Therefore,
grains are refined. When the laser cladding process is assisted by the steady magnetic
field, the Lorentz force causes the metal to be subjected to a vertical and straight inward
force, which strengthens the stirring in the direction perpendicular to the flow direction of
the liquid. This causes the grain to be arranged in circular trajectories and promotes the
refinement of the grains. When the laser cladding process is assisted by the coupled field
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with the steady magnetic field and vibration field, the liquid metal in the molten pool is
fully stirred; the heat diffusion in the molten pool is accelerated; the temperature gradient
in front of the solid–liquid interface decreases; and the large-size dendrites are broken.
Furthermore, the grains are further refined and exhibit the same arrangement rule as the
grains which are assisted by the magnetic field.
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Figure 7. The mechanism of the effect of grains in laser cladding coating caused by different field-
assisted types.

Figure 8 shows the worn surface morphology of the coating assisted by different fields,
which are examined in detail using SEM after being subjected to sliding wear under the
same loads. It can be seen from Figure 8a that there are wide and deep grinding furrows on
the surface of the abrasion mark without field assistance. In addition, the adhesive wear is
present on the coating surface. Importantly, the grinding furrows’ width in Figure 8b,c is
significantly reduced, and the furrow depth is much smaller than the coating without field
assistance. Figure 8d shows the coating wear morphology assisted by the coupled fields of
magnetic field and vibration field. Compared with the coating assisted by a single field, the
surface grinding furrow is shallower and the wear debris is smaller. Combined with the
three-dimensional wear topography (Figures S2 and S3), it can be seen that the coating of
4# has the best abrasion resistance, indicating that the refined grains and the increase in
hardness improve the wear resistance of the coating.
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4. Conclusions

The Fe60 laser cladding coating is prepared on the surface of 45 steel with the assistance
of alternating magnetic field–mechanical vibration coupling field. The structure and wear
resistance of coatings are investigated.

The structure in the coating is mainly composed of solid solution Ni-Cr-Fe, (Fe, Ni),
and Fe-Cr and also contains a certain amount of Cr2Fe14C hard phase. The composition of
the coating is not changed by the addition of the assisted field.

When the coating is assisted by the coupled fields, the steady magnetic field and
vibration field enhance the stirring effect in the molten pool, and the grains are further
refined and exhibit the same arrangement rule as the grains which are assisted by the
magnetic field. Meanwhile, the heat diffusion in the molten pool is accelerated by the
steady magnetic field; the temperature gradient in front of the solid—liquid interface
decreases; and the large-size dendrites are broken. Those contribute to the grains being
refined significantly.

The minimum grain size and maximum hard phase content in the coating obtained by
the coupled field assistance lead to the maximum microhardness of the coating (702 HV0.2)
and the minimum wear volume loss (1848 µm·cm−3). This work broadens the research of the
laser cladding coating field and contributes to the development of wear-resistant materials.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/coatings12060751/s1, Figure S1: Self-made magnetic field
generation equipment (a) power (b) exciter. Figure S2: 3D morphology of the friction surface with the
coating, (a) 1#, (b) 2#, (c) 3#, (d) 4#. Figure S3: The figure of coating wear section (a) 1#, (b) 2#, (c) 3#,
(d) 4#.
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