Effect of Cerium Tartrate on the Corrosion Resistance of Epoxy Coating on Aluminum Alloy and Its Mechanism
Abstract
:1. Introduction
2. Experimental
2.1. Materials and Samples Preparation
2.2. Experimental Methods
3. Results and Discussion
3.1. The Distribution of Cerium Tartrate in the Epoxy Coating
3.2. Effect of Cerium Tartrate on the Protective Performance of the Epoxy Coating
3.3. EIS Analysis of Double-Layer Coated Samples Containing 5 wt% CeTar
3.4. Cerium Release of the Epoxy Coating
3.5. FTIR Analysis of the Coatings
3.6. XPS Analysis Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Huda, Z.; Taib, N.I.; Zaharinie, T. Characterization of 2024-T3: An aerospace aluminum alloy. Mater. Chem. Phys. 2009, 113, 515–517. [Google Scholar] [CrossRef]
- Nawaz, M.; Shakoor, R.A.; Kahraman, R.; Montemor, M.F. Cerium oxide loaded with Gum Arabic as environmentally friendly anti-corrosion additive for protection of coated steel. Mater. Des. 2021, 198, 109361. [Google Scholar] [CrossRef]
- Vakili, H.; Ramezanzadeh, B.; Amini, R. The corrosion performance and adhesion properties of the epoxy coating applied on the steel substrates treated by cerium-based conversion coatings. Corros. Sci. 2015, 94, 466–475. [Google Scholar] [CrossRef]
- Wang, Y.F.; Su, H.; Gu, Y.L.; Song, X.; Zhao, J.S. Carcinogenicity of chromium and chemoprevention: A brief update. OncoTargets Ther. 2017, 10, 4065–4079. [Google Scholar] [CrossRef] [Green Version]
- Hinton, B.R.W.; Arnott, D.R.; Ryan, N.E. Inhibition of aluminum alloy corrosion by cerous cations. Met. Forum 1984, 7, 211–217. [Google Scholar]
- Hinton, B.R.W. Corrosion inhibition with rare earth metal salts. J. Alloy. Compd. 1992, 180, 15–25. [Google Scholar] [CrossRef]
- Deyab, M.A.; El-Rehim, S.S.A.; Hassan, H.H.; Shaltot, A.M. Impact of rare earth compounds on corrosion of aluminum alloy (AA6061) in the marine water environment. J. Alloy. Compd. 2020, 820, 153428. [Google Scholar] [CrossRef]
- Mishra, A.K.; Balasubramaniam, R. Corrosion inhibition of aluminum alloy AA2014 by rare earth chlorides. Corro. Sci. 2007, 49, 1027–1044. [Google Scholar] [CrossRef]
- Zhao, D.; Sun, J.; Zhang, L.L.; Tan, Y.; Li, J. Corrosion behavior of rare earth cerium based conversion coating on aluminum alloy. J. Rare Earths. 2010, 28, 371–374. [Google Scholar] [CrossRef]
- Yasakau, K.; Zheludkevich, M.L.; Lamaka, S.V.; Ferreira, M.G.S. Mechanism of corrosion inhibition of AA2024 by rare-earth compounds. J. Phys. Chem. B 2006, 110, 5515–5528. [Google Scholar] [CrossRef]
- Ho, D.; Brack, N.; Scully, J.; Markley, T.; Forsyth, M.; Hinton, B.R.W. Cerium dibutylphosphate as a corrosion inhibitor for AA2024-T3 aluminum alloys. J. Electrochem. Soc. 2006, 153, B392–B401. [Google Scholar] [CrossRef] [Green Version]
- Xhanari, K.; Finšgar, M. Organic corrosion inhibitors for aluminum and its alloys in chloride and alkaline solutions: A review. Arab. J. Chem. 2019, 12, 4646–4663. [Google Scholar] [CrossRef]
- Tiringer, U.; Durán, A.; Castro, Y.; Milošev, I. Self-healing effect of hybrid sol-gel coatings based on GPTMS, TEOS, SiO2 nanoparticles and Ce(NO3)3 applied on aluminum alloy 7075-T6. J. Electrochem. Soc. 2018, 165, C213–C225. [Google Scholar] [CrossRef]
- Shi, H.W.; Han, E.-H.; Liu, F.C. Corrosion protection of aluminium alloy 2024-T3 in 0.05 M NaCl by cerium cinnamate. Corros. Sci. 2011, 53, 2374–2384. [Google Scholar] [CrossRef]
- Shi, H.W.; Han, E.-H.; Lamaka, S.V.; Zheludkevich, M.L.; Liu, F.; Ferreira, M.G.S. Cerium cinnamate as an environmentally benign inhibitor pigment for epoxy coatings on AA2024-T3. Prog. Org. Coat. 2014, 77, 765–773. [Google Scholar] [CrossRef]
- Soestbergen, M.V.; Baukh, V.; Erich, S.J.F.; Huinink, H.P.; Adan, O.C.G. Release of cerium dibutylphosphate corrosion inhibitors from highly filled epoxy coating systems. Prog. Org. Coat. 2014, 77, 1562–1568. [Google Scholar] [CrossRef]
- Gobara, M.; Baraka, A.; Akid, R.; Zorainy, M. Corrosion protection mechanism of Ce4+/organic inhibitor for AA2024 in 3.5% NaCl. RSC Adv. 2020, 10, 2227–2240. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mardel, J.; Garcia, S.J.; Corrigan, P.A.; Markley, T.; Hughes, A.E.; Muster, T.H.; Lau, D.; Harvey, T.G.; Glenn, A.M.; White, P.A.; et al. The characterisation and performance of Ce(dbp)3-inhibited epoxy coatings. Prog. Org. Coat. 2011, 70, 91–101. [Google Scholar] [CrossRef]
- Jouyandeh, M.; Ganjali, M.R.; Mehrpooya, M.; Abida, O.; Jabbour, K.; Rabiee, N.; Habibzadeh, S.; Mashahdzadeh, A.H.; García-Peñas, A.; Stadler, F.J.; et al. Cure kinetics of samarium-doped Fe3O4 epoxy nanocomposites. J. Compos. Sci. 2022, 6, 29. [Google Scholar] [CrossRef]
- Jouyandeh, M.; Ganjali, M.R.; Ali, J.A.; Akbari, V.; Karami, Z.; Aghazadeh, M.; Zarrintaj, P.; Saeb, M.R. Curing epoxy with polyethylene glycol (PEG) surface-functionalized GdxFe3-xO4 magnetic nanoparticles. Prog. Org. Coat. 2019, 137, 105283. [Google Scholar] [CrossRef]
- Jouyandeh, M.; Zarrintaj, P.; Ganjali, M.R.; Ali, J.A.; Karimzadeh, I.; Aghazadeh, M.; Ghaffari, M.; Saeb, M.R. Curing epoxy with electrochemically synthesized GdxFe3-xO4 magnetic nanoparticles. Prog. Org. Coat. 2019, 136, 105245. [Google Scholar] [CrossRef]
- Hu, T.H.; Shi, H.W.; Fan, S.H.; Liu, F.C.; Han, E.-H. Cerium tartrate as a pigment in epoxy coatings for corrosion protection of AA2024-T3. Prog. Org. Coat. 2017, 105, 123–131. [Google Scholar] [CrossRef]
- Hu, T.H.; Shi, H.W.; Wei, T.; Liu, F.C.; Fan, S.H.; Han, E.-H. Cerium tartrate as a corrosion inhibitor for AA2024-T3. Corros. Sci. 2015, 95, 152–161. [Google Scholar] [CrossRef]
- Wei, H.; Tang, J.H.; Chen, X.P.; Tang, Y.M.; Zhao, X.H.; Zuo, Y. Influence of organic and inorganic cerium salts on the protective performance of epoxy coating. Prog. Org. Coat. 2022, 166, 106763. [Google Scholar] [CrossRef]
- Zhu, R.L.; Zhang, J.; Chang, C.; Gao, S.; Ni, N. Effect of silane and zirconia on the thermal property of cathodic electrophoretic coating on AZ31 magnesium alloy. J. Magnes. Alloy. 2013, 1, 235–241. [Google Scholar] [CrossRef] [Green Version]
- Zhu, D.; van Ooij, W.J. Corrosion protection of metals by water-based silanemixtures of bis-[trimethoxysilylpropyl] amine and vinyltriacetoxysilane. Prog. Org. Coat. 2004, 49, 42–53. [Google Scholar] [CrossRef]
- Feng, X.G.; Zhu, C.; Lu, X.Y.; Zhang, Y.J.; Wu, T.; Zuo, Y.; Zhao, X.H.; Dun, Y.C.; Wang, M. The influence of hydrofluoric acid doped polyaniline on the protective performance of a Mg-rich epoxy coating on AZ91D magnesium alloy. Prog. Org. Coat. 2020, 141, 105550. [Google Scholar] [CrossRef]
- Ji, W.-G.; Hu, J.-M.; Liu, L.; Zhang, J.-Q.; Cao, C.-N. Enhancement of corrosion performance of epoxy coatings by chemical modification with GPTMS silane monomer. J. Adhes. Sci. Technol. 2008, 22, 77–92. [Google Scholar] [CrossRef]
- GB/T 6824-2008; Determination for release rate of cupper-ion for antifouling paint on ship bottom. GB/T: Beijing, China, 2008. (In Chinese)
- Sun, W.; Xing, C.; Tang, X.B.; Zuo, Y.; Tang, Y.M.; Zhao, X.H. Comparative study on the degradation of a zinc-rich epoxy primer/acrylic polyurethane coating in different simulated atmospheric solutions. J. Coat. Technol. Res. 2021, 18, 397–413. [Google Scholar] [CrossRef]
- Xing, C.; Wang, W.; Qu, S.; Tang, Y.M.; Zhao, X.H.; Zuo, Y. Degradation of Zinc-rich epoxy coating in 3.5% NaCl solution and evolution of its EIS parameters. J. Coat. Technol. Res. 2021, 18, 843–860. [Google Scholar] [CrossRef]
- Peng, Y.; Hughes, A.E.; Mardel, J.I.; Deacon, G.B.; Junk, P.C.; Forsyth, M.; Hinton, B.R.W.; Somers, A.E. Leaching behavior and corrosion inhibition of a rare earth carboxylate incorporated epoxy coating system. ACS Appl. Mater. Interfaces 2019, 11, 36154–36168. [Google Scholar] [CrossRef]
- Ubaid, F.; Naeem, N.; Shakoor, R.A.; Kahraman, R.; Mansour, S.; Zekri, A. Effect of concentration of DOC loaded TiO2 nanotubes on the corrosion behavior of smart coatings. Ceram. Int. 2019, 45, 10492–10500. [Google Scholar] [CrossRef]
- Jegdić, B.V.; Živković, L.S.; Popić, J.P.; Rogan, J.; Bajat, J.B.; Mišković-Stanković, V.B. Corrosion stability of cerium-doped cataphoretic epoxy coatings on AA6060 alloy. Mater. Corros. 2016, 67, 1173–1184. [Google Scholar] [CrossRef]
- Jouyandeh, M.; Paran, S.M.R.; Khadem, S.S.M.; Ganjali, M.R.; Akbari, V.; Vahabi, H.; Saeb, M.R. Nonisothermal cure kinetics of epoxy/MnxFe3-xO4 nanocomposites. Prog. Org. Coat. 2020, 140, 105505. [Google Scholar] [CrossRef]
- Dabalà, M.; Armelao, L.; Buchberger, A.; Calliari, I. Cerium-based conversion layers on aluminum alloys. Appl. Surf. Sci. 2001, 172, 312–322. [Google Scholar] [CrossRef]
- Alexander, M.R.; Beamson, G.; Blomfield, C.J.; Leggett, G.; Duc, T.M. Interaction of carboxylic acids with the oxyhydroxide surface of aluminium: Poly(acrylic acid), acetic acid and propionic acid on pseudoboehmite. J. Electron. Spectrosc. Relat. Phenom. 2001, 121, 19–32. [Google Scholar] [CrossRef]
- Saei, E.; Ramezanzadeh, B.; Amini, R.; Kalajahik, M.S. Effects of combined organic and inorganic corrosion inhibitors on the nanostructure cerium based conversion coating performance on AZ31 magnesium alloy: Morphological and corrosion studies. Corro. Sci. 2017, 127, 186–200. [Google Scholar] [CrossRef]
- Pu, Y.; Hayes, S.A.; O’Keefe, T.J.; O’Keefe, M.J.; Stoffer, J.O. The phase stability of cerium species in aqueous systems. J. Electrochem. Soc. 2006, 153, C74–C79. [Google Scholar] [CrossRef]
- Ramezanzadeh, B.; Rostami, M. The effect of cerium-based conversion treatment on the cathodic delamination and corrosion protection performance of carbon steel-fusion-bonded epoxy coating systems. Appl. Surf. Sci. 2017, 392, 1004–1016. [Google Scholar] [CrossRef]
Coating Samples | Model A | Model B | Model C |
---|---|---|---|
Single-layer coating | 0–5 d | 6–34 d | 35–520 d |
Double-layer coating | 0–7 d | 8–26 d | 27–520 d |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, X.; Tang, J.; Wei, H.; Zhang, H.; Tang, Y.; Zhao, X.; Zuo, Y. Effect of Cerium Tartrate on the Corrosion Resistance of Epoxy Coating on Aluminum Alloy and Its Mechanism. Coatings 2022, 12, 785. https://doi.org/10.3390/coatings12060785
Chen X, Tang J, Wei H, Zhang H, Tang Y, Zhao X, Zuo Y. Effect of Cerium Tartrate on the Corrosion Resistance of Epoxy Coating on Aluminum Alloy and Its Mechanism. Coatings. 2022; 12(6):785. https://doi.org/10.3390/coatings12060785
Chicago/Turabian StyleChen, Xueping, Jianhua Tang, Han Wei, Hanlu Zhang, Yuming Tang, Xuhui Zhao, and Yu Zuo. 2022. "Effect of Cerium Tartrate on the Corrosion Resistance of Epoxy Coating on Aluminum Alloy and Its Mechanism" Coatings 12, no. 6: 785. https://doi.org/10.3390/coatings12060785
APA StyleChen, X., Tang, J., Wei, H., Zhang, H., Tang, Y., Zhao, X., & Zuo, Y. (2022). Effect of Cerium Tartrate on the Corrosion Resistance of Epoxy Coating on Aluminum Alloy and Its Mechanism. Coatings, 12(6), 785. https://doi.org/10.3390/coatings12060785