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Abstract: Conductive polypyrrole (PPy) has excellent biocompatibility and structural stability. It is an
ideal electroactive biomaterial that can apply exogenous electrical stimulation to promote osteoblast
differentiation. However, PPy is a kind of bio-inert material, which does not have osteoinductive
capacity. Therefore, we have introduced a kind of bioactive material, hydroxyapatite (HA), to con-
struct PPy/HA composite to enhance bioactivity and osteoinduction. In addition, micron-topological
morphology of scattered grid pattern has been designed and introduced to the PPy/HA coatings,
which can further enhance the regulation ability of the coatings to the adhesion, proliferation and
differentiation of MC3T3-E1 cells. In vitro simulated body fluids (SBFs) immersion test results have
demonstrated that the fabricated micropatterned PPy/HA composite coatings perform bioactivity
well and can promote the mineral deposition of HA on the surface. Moreover, it can also benefit
the proliferation and osteognetic differentiation of MC3T3-E1 cells, when accompanied by external
electrical stimulation (ES). In this study, we have successfully constructed electroactive and bioactive
coatings, the method of which can potentially be applied to the surface functional modification of
traditional bone repair metals.

Keywords: polypyrrole/hydroxyapatite composite; micropatterned; electrical stimulation; MC3T3-E1

1. Introduction

The growth and remodeling of bone tissue are accompanied by the generation of
endogenous electrical signals [1–4]; therefore, the electrical environment is one of the
important microenvironments for bone cells. In fact, external electrical stimulation (ES)
has been used in the clinical treatment of bone diseases, such as fractures and osteoporo-
sis [5–7]. Till now, many studies have also confirmed that ES can promote the proliferation
and differentiation of osteoblasts [8], so as to promote the formation and regeneration of
new bone [9,10]. In addition, the chemical composition and topological morphology of the
material surface in contact with cells, and the application of external stimulation signals
(electricity, light, magnetism, etc.), have significant impact on the metabolism of cells [11,12].
Therefore, appropriate morphological design, chemical component improvement and exter-
nal applied stimulation can have important effects on the adhesion, spreading, proliferation
and differentiation of cells [13–15]. With the help of some high-precision processing meth-
ods, it is possible to design and construct composite structures with different physical and
chemical properties and topological morphologies. The micro electro mechanical system
(MEMS) integrates many high-precision machining methods, such as lithography, corrosion
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and so on [16]. At present, it is widely used to manufacture advanced micro-integrated in-
telligent packing devices. Application of lithography technology can help to fabricate some
patterned structures with micro- or nano-scale graphics. The self-assembled monolayer
(SAM) technique could achieve functional modification of materials by adjusting the end
groups at both ends of long-chain organic molecules [17].

Conductive polypyrrole (PPy) is an ideal electroactive biomaterial with excellent
biocompatibility [18,19], and it can be used as conductive coatings to directly apply ES
to cells with electrical response, including osteoblasts, so as to regulate cell behavior and
metabolism [20,21]. Many related studies, and our previous works, have also confirmed
that PPy, as a kind of conductive coating, can promote the proliferation and differentiation
of MECT3-E1 cells with ES [22–26]. However, PPy is a kind of bio-inert material without
bioactivity, and cannot induce cell differentiation [27]. Therefore, there is a need to prepare
new composite materials to improve the bioactivity of PPy, on the premise of preserving
the conductivity [28,29].

Hydroxyapatite (HA, Ca10(PO4)6(OH)2) is the main inorganic component of human
bone [30,31]. It has excellent biocompatibility, bioactivity, and osteoinductivity [32–36].
Therefore, HA has been applied in clinical bone repair to provide a functional coating, or
scaffold, for new bone formation [37–41]. However, the poor mechanical capacity of HA
greatly restricts its application. At present, HA is mainly used as the surface modification
coating of metal implants [42–44]. Based on the huge differences in physical properties, the
interaction is not close [45]. In addition, long-term erosion from immersing in a biologically
liquid environment might lead to peeling, dissolution and erosion of HA coatings from
the metal surface, thus leading to the failure of the material implantation and tissue
repair [46,47].

At present, many researchers are investigating the combination of PPy and HA so as
to improve the application of these two materials. Wu et al. chose a pulse electrochemical
method and used PPy as a regulator to manufacture a dexamethasone/hydroxyapatite
composite coating on a titanium surface, achieving a stable and slow release of HA and
dexamethasone, as well as sustained osteoinductivity [26]. Chakraborty et al. synthesized
HA-PPy composite coating by pulsed reverse electrochemical deposition, which improved
the corrosion protection performance behavior of SS316 [48]. Song et al. fabricated a three-
dimensional reduced-graphene oxide/polypyrrole/hydroxyapatite composite scaffold
through an electrostatic layer-by-layer assembly strategy, followed by an electrochemical
deposition process [49], which had good mechanical properties and good osteogenic
performance. However, these studies did not concern themselves with the effect of ES
on osteogenesis, and, also, they did not take advantage of two-dimensional topological
structuring.

In this work, bioactive and osteoinductive micropatterned PPy/HA composite coat-
ings with micron-scale topological morphology were fabricated, which possess both the
electroactivity of PPy and the bioactivity of HA. The electroactive composite coatings were
constructed by a two-step method, in which conductive PPy, with micro-scale pattern,
was first electrochemically deposited on a micropatterned substrate processed by MEMS
technology. Subsequently, HA was further selectively mineral deposited and filled the
checkered area with the assistance of SAMs. Characterizations showed that the micropat-
terned PPy/HA composite coatings maintained good conductivity and electrochemical
activity, and could accelerate the deposition of HA on the surface. Moreover, combined
with ES, the adhesion, proliferation and differentiation of MC3T3-E1 cells were significantly
promoted, and the osteogenesis of MC3T3-E1 cells was accelerated.

2. Materials and Methods
2.1. Materials

Pyrrole (98%) and sodium dodecyl benzene sulfonate (DBS) were obtained from
Sinopharm Chemical Reagent Co., Ltd. (Beijing, China). Hexadecanoic acid mercaptan
(MDA) was purchased from Alfa Aesar China Chemical Co., Ltd. (Shanghai, China). Other
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inorganic salt reagents that were used, such as sodium chloride (NaCl), sodium bicarbonate
(NaHCO3) and hydrochloric acid (HCl), were bought from Xilong Chemical Co., Ltd.
(Shantou, China).

Pyrrole was purified by distillation under the protection of nitrogen and seal preserved
at −20 ◦C for subsequent use. Other reagents were used directly without further treatment.
The water used in all experiments was ultrapure water (18 MΩ).

Monocrystal silicon wafers were cleaned using the RCA standard cleaning method.
Then, they were placed in an oxidation diffusion furnace at 950 ◦C until the thickness of the
oxide layer reached 500 nm. Finally, 500 Å Ti and 1000 Å Au were sputtered on the surface
of the oxidized silicon wafer. The Au/Ti/Si wafer was used for further experimentation
(Figure 1 1©).

Figure 1. Fabrication process of micropatterned PPy coatings and micropatterned PPy/HA composite
coatings. 1© The Au/Ti/Si wafer; 2© Micropatterned photoresist substrate; 3© The micropatterned
PPy; 4© SAM-modified micropatterned PPy coatings; 5© The SAM-modified micropatterned PPy
coatings soaked in 10× SBF solution; 6© The micropatterned PPy/HA composite coatings.

2.2. Fabrication of Micropatterned PPy Coatings

Firstly, micropatterned photoresist substrate (Figure 1 2©) was prepared by conventional
ultraviolet lithography. The photoresist was applied with homogenizer at 2000 rpm/min
for 30 s, then put in the oven at 92 ◦C and baked for 10–12 min. After baking, the photoresist
was exposed for 12 s and developed for 90 s. Finally, after cleaning with deionized water
and drying with N2, the micropatterned photoresist was obtained.

Then, PPy was deposited on the prepared micropatterned photoresist substrate by
electrochemical polymerization. The process was carried out in a three-electrode system,
in which the photoresist Au/Ti/Si wafer was the working electrode, a platinum wire was
the counter electrode and a saturated calomel electrode (SCE, INESA Scientific Instrument
Co., Ltd. Shanghai, China) was the reference electrode. The 0.1 M pyrrole monomer
was dissolved in the electrolyte of aqueous solution (pH = 7.4) containing 0.1 M DBS.
The micropatterned PPy coatings were directly electrochemically polymerized on the
Au/Ti/Si wafer under a constant current density of 0.1 mA/cm2 for 1500 s with CHI660D
electrochemical workstation (Chenhua Instrument Company, Shanghai, China). Finally, the
micropatterned PPy (Figure 1 3©) was ultrasonically cleaned with acetone and ethanol to
remove the photoresist. After washing with ultrapure water, the sample was blow dried
with N2 for further use.

PPy coatings with common morphology were electrochemically deposited on the
Au/Ti/Si substrate in the same electrolyte and deposition conditions.

2.3. Fabrication of Micropatterned PPy/HA Composite Coatings

The micropatterned PPy was immersed in 2 mM of fresh MDA ethanol solution for
12–16 h. Based on the interaction between sulfhydryl and Au, MDA molecules would
self-assemble in the area uncovered by PPy to form a closely arranged SAM (Figure 1 4©).
Then, the SAM-functionalized micropatterned PPy coatings could be obtained by washing
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with ultrapure water and drying with N2. Finally, the SAM-modified micropatterned
PPy coatings were soaked in 10× SBF solution for 2 h (Figure 1 5©). Based on the electro-
static attraction of the active carboxyl groups at the end of the SAMs to Ca2+ in solution,
Ca2+ and PO4

3− ions were selectively aggregated and deposited on the SAMs to induce
HA nucleation and growth, so as to obtain micropatterned PPy/HA composite coatings
(Figure 1 6©).

2.4. Characterization

The morphologies of micropatterned photoresist on the Au/Ti/Si substrate and mi-
cropatterned PPy coatings were observed by metallographic microscopy (L150, Nikon,
Germany). The morphologies of micropatterned PPy coatings, micropatterned PPy/HA
composite coatings and HA in micropatterned PPy/HA composite coatings were observed
by scanning electron microscopy (SEM, LEO1530, Zeiss, Germany) with an accelerating
voltage of 20.0 kV. The FTIR spectra of micropatterned PPy and micropatterned PPy/HA
composite coatings were analyzed using Fourier transform infrared spectrometer (FTIR,
Avatar 360, Nocalet Instrument Corporation, Waltham, MA, USA) with the KBr pellet
method. The element composition and crystal structure of deposited HA was further char-
acterized by X-ray energy spectrum (EDS, EDS7426, Oxford Instruments, Oxford, Britain)
and X-ray diffraction (XRD, X-pert, Panalytical, Almelo, The Netherlands). The static con-
tact angle of different samples was measured by contact angle meter (JC2000A, Shanghai
Zhongchen Digital Technic Apparatus Co., Ltd., Shanghai, China) with water dropped
at three different positions of each sample, and each sample was randomly tested in five
parallel specimens. The electrochemical activity and stability were characterized by cyclic
voltammetry (CV), tested in 0.9% NaCl using a CHI660D electrochemical workstation. The
scanning voltage range was −0.9~0.2 V, and the scanning speed was 50 mV/s.

2.5. Bioactivity Assessment

The micropatterned PPy/HA composite coatings were immersed into fresh 1× SBF
solution under constant temperature at 36.5 ◦C, and the 1× SBF solution was replaced
every 48 h. The soaked samples were taken out at 2 and 4 days respectively, and the
micropatterned PPy/HA composite coatings were washed with deionized water and dried
naturally at room temperature, then characterized by SEM, EDS and XRD.

2.6. Cell Culture

The mouse embryonic osteoblast precursor cells (MC3T3-E1) were purchased from the
Peking Union Cell Center. MC3T3-E1 cells were cultured in the alpha-modified minimum
essential medium (α-MEM, Hyclone, Logan, UT, USA), supplemented with 10% FBS (Gibco,
Waltham, MA, USA) and 1% penicillin and streptomycin (Gibco, Waltham, MA, USA) in a
humidified 5% CO2 incubator at 37 ◦C. The medium was changed every 2 days during the
normal subculture of cells.

2.7. Effect of Micropatterned PPy/HA Composite Coatings with ES on MC3T3-E1 Cell Adhesion,
Proliferation and Differentiation

The self-made device to exert electrical stimulation was soaked in chromic acid wash-
ing solution for more than 12 h, then washed with ultra-pure water and sterilized by
high pressure steam sterilization for 20 min. Micropatterned PPy/HA composite coatings,
non-patterned PPy, silicon film, copper rods, screws and wires were soaked in 75% alcohol
overnight then cleaned with ultra-pure water. Before samples were installed into the elec-
trical stimulation devices, all materials and equipment were irradiated under UV radiation
for 1 h.

The sterilized coatings were placed in the self-made electric stimulation devices and
the exposed area of coatings in contact with cells was 1.0 × 0.5 cm2. Suspension of MC3T3-
E1 cells with 2 × 104 cells/mL was seeded into each well and cultured in a cell incubator at
5% CO2 and 37 ◦C. The medium was changed every 24 h.
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The ES was applied to cells from the day of inoculation with a constant current of
10 µA for 4 h every day for 14 days. The electrical signal was output by an electrochemical
workstation using the multi-current steps mode. Each ES chamber (as shown in Figure 2)
was connected in a series to the electrochemical workstation through a wire connecting
electrode rod.

Figure 2. Metallographic microscope image of micropatterned photoresist (a) and micropatterned
PPy (b); SEM image of micropatterned PPy (c), micropatterned PPy/HA composite coatings (d),
local enlarged SEM images of HA (e) and PPy (f) morphologies in micropatterned PPy/HA compos-
ite coatings.

2.7.1. Cell Morphology

The morphology of cells on different coatings was observed by fluorescence mi-
croscope (Leica DM2500, Leica Camera, Wetzlar, Germany) and SEM. After MC3T3-E1
cells were cultured for 24 h, cells were stained with 200 µL Calcein-AM staining solution
(2 µmol/L) at 37 ◦C for 15–30 min, then the staining solution was discarded and they were
washed with PBS 3 times. Finally, samples were observed by fluorescence microscope.

The cells on different coatings for SEM detection needed to undergo gradient dehy-
dration with ethanol solutions and further dried in a 37 ◦C oven. Before observation, the
sample needed to be sprayed with Au.

2.7.2. MTT Assay

The cell viability of MC3T3-E1 cells growing on different coatings was investigated
via MTT assay. MC3T3-E1 cells were cultured with different coatings. At different tested
time points (4, 24 and 48 h), the medium was removed and washed twice with PBS, 500 µL
of fresh culture medium, without FBS, was mixed with 100 µL MTT working solution
(5 mg/mL) and added to each well and co-incubated at 37 ◦C for 4 h. Finally, the solution
was completely removed and 500 µL DMSO was added to fully dissolve the formazan
crystals. The testing solution was transferred into a 96-well plate, and the optical density
(OD) values at 570 nm were measured by enzyme standardizer (Infinity 200pro, Tecan,
Männedorf, Switzerland). This experiment was repeated 4 times and each sample was set
in 6 parallel samples.
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2.7.3. Determination of the BSA Protein Content, Alkaline Phosphatase Activity (ALP) and
Inorganic Calcium Content

The effect of different coatings and ES on MC3T3-E1 cell biosynthesis was evaluated
by testing the BSA protein content, ALP activity and inorganic calcium content on the 3rd,
7th and 14th days, respectively. MC3T3-E1 cells in each group were washed with PBS and
lysed with 200 µL 0.1% TritonX-100 for 30 min at 4 ◦C, then the lysate was centrifuged at
4 ◦C with 3000 rpm/min for 2 min. The supernatant was collected for further detection
of protein content and ALP activity. After this, 500 µL HCl (0.1 M) was added to the
supernatant, and it was incubated at 4 ◦C for 4 h to fully dissolve the calcium. Then, the
solution was centrifuged at 4 ◦C with 1000 rpm/min for 2 min. The supernatant was
collected for further inorganic calcium content detection.

The total protein content was measured by a commercial BCA protein Assay Kit
(Pulley Genetic Technology, Beijing, China) by testing the absorption values at 570 nm. The
ALP activity was measured using the commercial ALP Assay Kit (Jiancheng technology Co.,
Ltd, Nanjing, China) by testing the absorption values at 405 nm. Inorganic calcium content
was measured by using a Calcium Assay Kit (Jiancheng technology Co., Ltd, Nanjing,
China) by testing the absorption values at 610 nm. These experiments were repeated
3 times. In each experiment, 4 parallel samples of each coating were set, and the absorption
values were measured with enzyme standardizer.

3. Results and Discussion
3.1. Preparation and Characterization of Micropatterned PPy/HA Composite Coatings

The process of micropatterned PPy/HA composite coating preparation is shown in
Figure 1. In brief, evenly distributed square micropattern was first fabricated on an/a
Au/Ti/Si substrate by photolithography. Metallographic microscope images showed
that the micropatterned photoresist was distributed in a regular lattice on the Au/Ti/Si
substrate and consisted of squares with side length and spacing of 10 µm (Figure 2a).
Subsequently, the photoresist micropatterned Au/Ti/Si substrate was used as the template,
and PPy was selectively electrochemically polymerized on the conductive areas uncovered
by photoresist. After the photoresist was removed, it could be seen that the continuous grid
PPy coatings with smooth and flat surface were successfully deposited and the boundary
of the pattern was clear (Figure 2b,c). Next, based on the strong interaction between the
sulfhydryl group and Au, functional 16-mercaptohexadecanoic acid (MDA) SAMs were
constructed on the exposed Au regions. Meanwhile, the carboxyl group at the exposed
end of the MDA SAMs could attract Ca2+ by electrostatic interaction, and then adsorbed
Ca2+ continued to attract anions, including phosphate and hydroxyl, thus inducing the
nucleation and mineralization growth of HA. Under the environment of high concentration
SBF (10×), SAMs could more quickly induce the rapid and localized growth of HA in the
SAMs’ covered areas. By soaking in 10× SBF for only 2 h, HA could highly selectively fill
the grid pattern without invading other PPy covered areas (Figure 2d), and the growing HA
showed a typical chrysanthemum-like crystal morphology (Figure 2e). Thus, we obtained
micropatterned PPy/HA composite coatings. The PPy with ordinary morphology coatings,
as the control group, had the same micro-morphology as the PPy part in micropatterned
PPy/HA composite coatings, showing a typical cauliflower shape (Figure 2f).

The chemical structures of the PPy and HA parts in PPy/HA composites were char-
acterized by FTIR, respectively. From the FTIR spectra of PPy and HA, it could be seen
that characteristic peaks of PPy appeared at 3346 cm−1, corresponding to N-H stretching
vibration and 1465 cm−1 ascribing to C=N/N-H stretching vibrations in the pyrrole ring.
In addition, peaks at 1090, 604, 563 and 436 cm−1 were basically consistent with the charac-
teristic peaks of PO4

3− in HA. Moreover, the peaks at 1456 and 1405 cm−1, attributed to
CO3

2−, indicated CaCO3 existed in the mineralized HA (Figure 3a). The EDS was carried
out to semi-quantitatively analyze elements in the HA part, and Ca, P, O, C, etc. elements
were detected. Among them, the Ca/P ratio was about 1.1–1.4 at different regions, which
was between the theoretical Ca/P ratio of HA (1.67) and CaHPO4·2H2O (DCPD, 1.0) [50]
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(Figure 3b). Therefore, it could be inferred that a variety of minerals composed of apatite,
dominated by HA, were deposited in 10× SBF. Therefore, it was speculated that the deposi-
tion obtained from 10× SBF was a mixture mineral, including HA and other apatites. At
the same time, the crystal diffraction peak analysis of the deposited mineral was obtained
by XRD and also confirmed that there were at least two types of crystals, including DCPD
and HA (Figure 3c). The contact angle tests showed that the micropatterned PPy/HA
composite coatings had good surface hydrophilicity (Figure 3d).

Figure 3. (a) FITR spectra of micropatterned PPy and HA in micropatterned PPy/HA composite
coatings; (b) EDS spectrum of micropatterned PPy/HA composite coatings; (c) XRD spectrum
of micropatterned PPy/HA composite coatings; (d) The water contact angle of different material
substrates; (e) Cyclic voltammogramms of micropatterned PPy in 0.9% NaCl solution with different
cycle turns at the scan rate of 50 mV/s; (f) Long-term electroactive stability of micropatterned PPy at
the scan rate of 50 mV/s.

On the PPy/HA composite coatings, the micropatterned PPy still existed as a continu-
ous structure, which ensured the conductivity of the composite coatings. The conductivity
of micropatterned PPy coatings was about 10 S/cm, which made the feasibility of sub-
sequent ES on cells valid. In addition, considering the composite coatings needed to be
immersed in medium with applied electrical signals for a long time, in subsequent exper-
iments we further evaluated the bonding and electrical stabilities of the micropatterned
PPy/HA composite coatings. It was noted that the PPy could uphold a relatively stable
redox property after multiple cycles of a CV scanning test (Figure 3e). Furthermore, the
electrochemical activity of the micropatterned PPy/HA composite coatings did not change
significantly even after soaking in solution for 1 month, which also demonstrated that the
micropatterned PPy coatings could maintain stable adhesion with the substrate under the
applied ES for a long time (Figure 3f).

3.2. Bioactivity Assessment of Micropatterned PPy/HA Composite Coatings

An ideal bone repair material should not only have excellent biocompatibility, but
also possess biological activity. Bioactive materials can quickly exchange ions with human
body fluid in the body, and form HA layers similar to the composition of natural bone
tissue on the surface through a series of reactions, which is beneficial to the forming of a
stable chemical interaction with bone to further induce tissue regeneration. Hence, HA was
introduced into the micropatterned PPy coatings to enhance the bioactivity. The bioactivity
of micropatterned PPy/HA composite coatings to promote HA deposition in vitro was
evaluated with simulated body fluid (1× SBF).

Immersing micropatterned PPy/HA composite coatings in SBF (×1) with standard
concentration, it was found that the HA part acted as nucleation sites to promote further
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mineralized deposition of HA. From the SEM images, it could be seen that newly formed
HA covered the original HA region and continued to epitaxially grow after soaking in
1× SBF for only 2 d. Till the 4th d, HA almost enclosed the whole substrate and formed
a new layer of HA (Figure 4a,b). However, no HA crystals were observed on pure PPy
coatings under the same conditions (Figure 4c). These results indicated that the PPy/HA
composite coatings had excellent biological activity and could quickly induce the mineral
deposition of HA.

Figure 4. SEM images of micropatterned PPy/HA composite coatings soaked in 1× SBF for 2 d
(a) and 4 d (b); (c) SEM image of unpatterned PPy soaked in 1× SBF for 4 d; (d) XRD spectrum
of micropatterned PPy/HA composite coatings soaked in 1× SBF for 4 d; (e) EDS spectrum of
micropatterned PPy/HA composite coatings soaked in 1× SBF for 4 d.

The EDS and XRD tests of the newly deposited HA layer displayed that the Ca/P
ratio of the induced formed HA was about 1.70, which was very close to that of natural
HA (Figure 4d,e). Combined with the results of XRD (Figure 4e), these results both
demonstrated that the bioactive composite coatings could induce the deposition of HA
with similar chemical structure to natural HA.

3.3. Effect of Micropatterned PPy/HA Composite Coatings with ES on Cell Activity

To investigate the positive effect of micropatterned PPy/HA composite coatings and
the synergistic effect with ES on adhesion, spreading and proliferation of MC3T3-E1 cells,
the cell activity and morphology of the contact between MC3T3-E1 cells with different
materials were assessed. The attachment and spreading of cells on the substrates are
the prerequisites for subsequent osteogenic differentiation. The interaction between the
cell and substrate is intuitively reflected in the spreading morphology of cells. From the
fluorescent images, it could be directly observed that there were significantly more MC3T3-
E1 cells when the cells were co-cultured with different coating materials for 24 h on two
different substrates with ES, than were the cases with the other two groups without ES.
Moreover, whether ES was applied or not, cells preferred to grow on the micropatterned
PPy/HA composite coatings, compared to the PPy coatings with ordinary morphology
(Figure 5a–d). In total, micropatterned PPy/HA composite coatings together with ES
had a synergistic effect on MC3T3-E1 cells. SEM images more intuitively showed the
adhesion and spreading behavior of cells on different substrates (Figure 5e–h). Actually,
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it was noted that MC3T3-E1cells presented a slender spindle shape on the surface of un-
patterned PPy coatings, while a more stretched polygon shape, with many cell bumps,
were observed on the micropatterned PPy/HA composite coatings. This indicated that
MC3T3-E1 cells had a more thorough spreading shape and larger spreading area on the
micropatterned PPy/HA composite coatings surface than on the ordinary PPy coatings,
and that the micropatterned PPy/HA composite coatings surface was conductive for cells
to contact each other and transmit relevant signals. Furthermore, MC3T3-E1 cells growing
on micropatterned PPy/HA composite coatings with ES stretched out more pseudopodia
and cell synapses, which suggested that cells had closer interaction and tighter adhesion
with the substrate.

Figure 5. (a–d) Fluorescence images of MC3T3-E1 cells cultured on different materials for 24 h;
(a) Micropatterned PPy/HA composite coatings with ES; (b) Unpatterned PPy with ES; (c) Micropat-
terned PPy/HA composite coatings without ES; (d) Unpatterned PPy without ES; (e,f) SEM images
of MC3T3-E1 cells cultured on different materials for 24 h; (e) Micropatterned PPy/HA composite
coatings with ES; (f) Unpatterned PPy with ES; (g) Micropatterned PPy/HA composite coatings
without ES; (h) Unpatterned PPy without ES; (i) Cell adhesion and proliferation curves of MC3T3-E1
cells on different materials. * p < 0.05, ** p < 0.01.

The proliferation of MC3T3-E1 cells cultured on different material surfaces and with or
without ES was evaluated by MTT assay. During the first 4–6 h after cells were inoculated
on different substrate materials, the main behavior of cells was to adhere to the surface of
the materials. As shown in Figure 5i, the adhesion of MC3T3-E1 cells on different materials
displayed significant disparity after 4 h, when more cells adhered to the two kinds of
coatings with ES than to those without ES, and micropatterned coatings accompanied with
ES had the most positive effect on promoting cell adhesion. Cell proliferation continued to
be detected on different materials, and it was noted that the proliferation rate of ME3T3-E1
cells with ES was obviously faster than without ES. Moreover, the advantage of promoting
cell proliferation by coatings with micropatterned morphology appeared, and the synergis-
tic effect of micropatterned PPy/HA composite coatings together with ES resulted in the
most efficient performance and the promotion of proliferation of MC3T3-E1 cells.

3.4. Effect of Micropatterned PPy/HA Composite Coatings with ES on Cell
Functional Characteristics

When osteoblasts adhere to the surface of the material and proliferate rapidly, they
initiate the synthesis of related proteins [51]. Therefore, the assay of the total cellular protein
content could reflect the cell survival and proliferation. Based on the total protein content
of MC3T3-E1 cells grown on different materials (Figure 6a), it could be seen that the total
protein content increased with time in all groups, indicating that all groups of materials
could promote the secretion and synthesis of proteins. Protein synthesis in cells with high
proliferative activity was more abundant and metabolically vigorous, which could disperse,
spread and multiply on the material surface in a short period of time. The protein content
of cells on the micropatterned PPy/HA composite coatings was higher than that on the
un-patterned PPy, which indicated that the modification of HA and micropatterning can
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promote cell adhesion, spreading and proliferation, thus, further promoting the increase of
total cellular protein content. The cellular protein content on all materials of the ES groups
was significantly higher than that of the non-ES groups, and the discrepancy was greatest
at 14 d. This indicated that the cellular growth state was exuberant with ES, resulting in a
significant increase in cellular protein synthesis. The highest protein content was found
in the group wherein cells grew on micropatterned PPy/HA composite coatings with
ES, demonstrating that MC3T3-E1 cells under this culture condition had more vigorous
metabolic and proliferative activities.

Figure 6. (a) BSA protein content of MC3T3-E1 cells cultured on different materials; (b) The ALP
activities of MC3T3-E1 cells cultured on different materials; (c) The inorganic calcium content of
MC3T3-E1 cells cultured on different materials. * p < 0.05, ** p < 0.01.

ALP is an early symbol of osteoblast differentiation and functional maturation. ALP
could enhance the local concentration of phosphorus in vivo to promote the nucleation
and mineralization of HA in bone tissue, and thus start the process of ECM mineralization.
By detecting the changes of ALP activity, we could intuitively show the differentiation,
maturity and bone mineralization ability of MC3T3-E1 cells. The results of the ALP activity
assay of MC3T3-E1 cells on different coatings are shown in Figure 6b. After culturing for
3 d, the ALP activity of MC3T3-E1 cells on all coatings was low and did not show significant
differences. This indicated that the cells were in the proliferation stage at this time, and the
cells had not started the differentiation process. With the extension of time, the ALP activity
in all groups increased significantly, and the differences between different groups were
gradually obvious. Till the 7th d, the ALP activity of the ES groups was significantly higher
than that of the non-ES groups and the ALP activity of the cells on the micropatterned
PPy/HA composite coatings with ES was the highest, which was almost 2.2-times higher
than that of the PPy with ordinary morphology, without ES (the control group). The ALP
activity in the ES or micropatterned factors alone groups only increased 1.6 and 1.3 folds,
respectively. At the 14th d, since no effective induction conditions were applied, the ALP
activity in the control group still had no obvious change, but the ALP activity of MC3T3-
E1 cells in the other three groups continued to increase. Among them, the ALP activity
of MC3T3-E1 cells on the micropatterned PPy/HA composite coatings together with ES
still maintained the advantage over the other groups, being almost twice as high as the
control group. The above results further confirmed that micropatterned PPy/HA composite
coatings with ES have synergetic effects on the functional differentiation of cells and can
significantly promote the mineralization and osteogenesis of MC3T3-E1 cells.

Their calcification ability is an important biological characteristic of osteoblasts. The
inorganic calcium content of the cells was measured to investigate the calcification ability
in osteoblasts. As seen in Figure 6c, the calcium content in all groups was very close and
at a relatively low concentration level at the 3rd d. This was because cellular calcium ion
deposition occurs mainly during the matrix calcification phase after the increase of ALP
activity, so the cellular calcium content of the micropatterned PPy/HA composite coatings
with ES group started to be significantly higher than the rest of groups until the 7th d, and
increased almost 1.8-fold more than that in control group. When cells were cultured until
the 14th d, most MC3T3-E1 cells had matured and entered the matrix calcification phase,
which led to the calcium content constant increasing significantly. The calcium content
of the cells on the micropatterned PPy/HA composite coatings was significantly higher
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than that on other groups. The result was consistent with the results of the BSA protein
content and ALP activity assay experiments, and demonstrated again that micropatterned
PPy/HA composite coatings with ES can promote the cellular matrix mineralization of
osteoblasts, thus promoting new osteogenesis.

4. Conclusions

In summary, we designed and fabricated bioactive micropatterned PPy/HA compos-
ite coatings. The composite coatings had both the advantages of excellent conductivity
and electrochemical activity from PPy and good biological activity from HA, and further
constructed topological microstructures with scattered square morphology by MEMS and
SAM technology. In vitro experimentation demonstrated that micropatterned PPy/HA
composite coatings had excellent mineralization inducing activity, which could induce and
shorten the mineral deposition time of HA in SBF solution. Moreover, the results of cell ex-
periments further verified that the micropatterned PPy/HA composite coatings performed
excellent bioactivity and osteoinductivity. When combined with externally applied ES, the
composite coatings could promote the adhesion, proliferation and osteogenic differentiation
of MC3T3-E1 cells growing on them. Therefore, the micropatterned PPy/HA composite
coatings are functional coatings with excellent biocompatibility and bioactivity, and can
be regarded as an ideal strategy to improve the surface bioactivity and osteoinductivity of
bone transplantation and to repair metal materials.
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