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Abstract: Pyroelectric energy harvesting is one of the more recent and promising solid-state approaches
for directly converting time-dependent temperature fluctuations into electric energy. Conventional
printing technologies can offer many advantages for the production of pyroelectric thin-film-based
devices, such as low cost, low temperature, the use of flexible substrates and shaping at the same time as
deposition. Nevertheless, some issues related to low printed thickness and film-forming microstructure
control need to be addressed. In this exploratory study, the possibility of exploiting the highly attractive
gravure printing process for the potential industrial manufacture of flexible polyvinylidene fluoride
(PVDF) thin-film pyroelectric devices was investigated. By the use of corona pre-treatment of the printing
substrate and low-temperature polar solvent evaporation, multilayer gravure-printed PVDF pyroelectric
devices were successfully manufactured for the first time, achieving a maximum generated current
of 0.1 nA at 2.5 K/s from a device with an active area of 1 cm?2. Considering the very low thermal
inertia and performance scaling by the area expected for pyroelectric thin-film-based devices, combined
with the upscaling potential of roll-to-roll gravure printing, our results provide new opportunities for
on-demand, low-cost pyroelectric device manufacture and their integration in hybrid harvesters.

Keywords: energy harvesting; pyroelectric generator; thin-film; gravure printing; corona treatment;
self-poling; PVDF

1. Introduction

With increase in environmental awareness and in the demand for self-powered elec-
tronics, energy-harvesting devices for converting wasted energy from ambient sources into
useful electrical power supplies have recently become more and more a topic of study [1-8].
Although in such converters the scavenged energy is usually rather small (from nW to mW),
their use starts to become feasible if applied to recently developed battery-free devices
or to the extension of their battery lifetime [1,2,9-12]. In particular, the energy produced
from such small energy generators is proposed as a local power source for many personal
and wearable electronic devices, wireless sensors, and in emerging Internet of Things (IoT)
applications, or connected to charge energy storage devices, such as supercapacitors and
batteries [1,2,6,13-18]. Among potential energy sources, wasted heat remains one of the
most attractive, since it is abundant, ubiquitous and easily accessible [3,17,19-22].

In the field of thermal energy harvesting, one of the more recent approaches in-
volves the use of solid-state devices based on pyroelectric materials to directly convert
temperature fluctuations into electric energy [19,20,22,23]. Pyroelectrics are a class of non-
centrosymmetric polar crystals exhibiting spontaneous polarization at room temperature in
the absence of an applied electric field [2,15,23-25]. The presence of spontaneous polariza-
tion in such materials implies the existence of a charge on their surfaces which can attract
free charges [2,19,24]. Since the level of polarization varies as the temperature changes in
the pyroelectrics, surface-bound charges become free (heating) or attracted (cooling) as a
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result of the temperature-dependent surface-charge density [26-29]. Therefore, if the pyro-
electric is orthogonally sandwiched to its polar axis by two electrodes, under short circuit
conditions, a generation of current i, can occur when the material undergoes temperature
variation over time, as expressed by the following equation:

) dT
lP = pAa/ (1)

where p = (%) . is the pyroelectric coefficient of the unclamped material defined as

the change of its spontaneous polarization Ps with temperature when in constant stress ¢
and electric field E conditions, A is the surface area covered by the electrodes and % is the
rate of temperature change [9,23,26,27]. Equation (1) states that iy is independent of the
material layer thickness and only scales with its active area as the current is only related
to the surface charge [19]. Therefore, pyroelectric materials can be employed to fabricate
low-power generators to be used under conditions of cyclic temperature variations [25,30].

Due to their high pyroelectric coefficient, single crystal materials are considered
promising in pyroelectric applications. However, their high cost, expensive processing
techniques and poor size scalability strongly restrict their adoption [27,29].

The interest in pyroelectric generators is due to their potential to operate at higher
thermodynamic efficiency than thermoelectric generators [5,13,19,23,26,31] and to their
enhanced suitability for thermal energy conversion at a small scale [15]. Even though
promising, pyroelectric energy harvesting is a rather new field of research and there are
still few studies, especially when compared to those on thermoelectrics, so that pyroelectric
generators appear to be distant from possible prototyping [3,9,15,16,19,21,30,32-35].

Nevertheless, the physical characteristics of pyroelectric devices make them poten-
tially compatible with established industrial printing processes for thin-film production,
leading to several possible advantages [23]. Thin-film-based devices have a very large
surface-to-volume ratio, which is useful for effective heat exchange, especially at high
temperature oscillation frequencies [5,20,24], so that a thermal-to-electrical conversion
efficiency of up to 50% can theoretically be achieved [13,16]. Printed thin-film technology is
also suited to the realization of large area electrodes to which the generated current is pro-
portional (see Equation (1)). Moreover, conventional printing technologies can offer unique
additional benefits for functional thin-film deposition, such as low-cost, low-temperature
processing, high-throughput, the use of flexible substrates and patterning/shaping at the
same time as deposition [36-39], fulfilling the ever-increasing demand for device flexibility
and customization [10,40]. To date, there have been few examples of the use of printing
technologies for preparing pyroelectric films [41-44]. Nonetheless, the fine control of film-
forming microstructure, necessary to meet pyroelectric polarization requirements, could
easily become a challenge because printing is performed by processing polycrystalline
materials from solution [45-48].

Based on these premises, in this exploratory study, we aimed to investigate the possibil-
ity of using printing technology as an innovative and cost-effective method for the potential
industrial manufacture of future on-demand flexible thin-film pyroelectric devices.

For this purpose, due to its ability to couple very high-throughput and high resolution
over a large area, the gravure printing method, widely used in industry, was chosen
among different printing techniques because of its great potential in the manufacture of
high quality material layers and devices [49-52]. Among available lead-free pyroelectric
materials, polyvinylidene fluoride (PVDF) was selected, as it is potentially better suited for
the testing purpose, having the typical advantages of polymers, such as low-temperature
processability, low-cost and flexibility [2,29]. Semi-crystalline PVDF exhibits several phases,
whose relative quantity strongly depends on film processing [2,8,53-55]. Among these,
v, and even more so, 3 polar phases are mostly recognized for providing a pyroelectric
response [2,8,54,56-60], but they are thermodynamically less stable than the non-polar
o phase and difficult to obtain [58,59,61]. Moreover, to achieve pyroelectric operation in
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PVDF films, a macroscopic polarization process must be performed to obtain the alignment
of polarized covalent bonds in the polar phases [2,8,51]. This process, termed “poling”,
is typically carried out by mechanical stretching at temperatures of 80-140 °C using a
prolonged electric field of at least 100 kV-mm ™! at temperatures of 80-165 °C, or by
electrospinning [8,51,62]. Although mechanical stretching is considered the preferred
process in the industrial production of pyroelectric films [63], it is not compatible with
direct film deposition on substrates [64].

Therefore, to enable the use of printing processes for the fabrication of PVDF-based
pyroelectric devices, two main objectives were addressed: (i) to obtain crystalline polar
phases in the printed PVDF film, and (ii) to orient dipoles normally to the substrate
using methods compatible with solvent-based printing processes. To this purpose, PVDF
crystallization by low temperature polar solvent evaporation and substrate corona pre-
treatment were considered as the most suitable methods. To evaluate the effectiveness of
the proposed methods, structural and functional characterizations of the printed films were
carried out and are discussed.

2. Materials and Methods

Ink solutions were prepared by dissolving PVDF (M,,~180,000, Sigma Aldrich, St.
Louis, MI, USA) under magnetic stirring in a mixture of dimethyl sulfoxide (DMSO)
and acetone (Sigma Aldrich, St. Louis, MI, USA) with different solvent mixing ratios at
concentrations ranging from 8 wt% to 15 wt% of PVDE.

The surface tension of the inks was measured by a contact angle OCA 20 system
(DataPhysics Instruments GmbH, Filderstadt, Germany) in pendant drop configuration.
The result for each type of ink was the average value of 10 repeated measurements carried
out on each sample.

The viscosity of the inks was measured by a Viscometer (SV-10, A&D Europe Gmbh,
Darmstadt, Germany) at a constant frequency of 30 Hz at 25 °C and ranged from 30 to
68 mPa-s for the 8 wt% and 15 wt% of PVDF in 50/50% w/w DMSQO/acetone solution,
respectively.

The electrical conductivity of the PVDF ink (12 wt%) was measured by a Conductivity
MeterLab CDM210 (Radiometer Analytical, Hach, Lyon, France) obtaining 2.8 uS/cm.

The inks were gravure printed onto ITO (indium tin oxide) coated PET (polyethylene
terephthalate) film and aluminum foil (both from Sigma Aldrich, St. Louis, MI, USA)
using a commercial laboratory-scale gravure printer G1-5 (IGT, Almere, The Netherlands),
equipped with a cylinder having a line density of 40 lines/cm, stylus angle of 120°, cell
depth of 72 mm and screen angle of 53°. All the prints were performed in air. For multilayer
printing, each layer was dried at 50 °C for 30 min before printing the next overlapped layer.

The thickness and the surface roughness (Sq) of the printed samples were investigated
by a coherence-correlation interferometry-enabled surface-profiler (Taylor-Hobson, model
CCI HD4K, Leicester, UK) and by a stylus profiler (KLA, model Tencor P-7, Milpitas, CA,
USA).

The corona pre-treatment was performed on the PET-ITO substrate to increase its
surface energy using a LabTEC Lab System (Tantec, Lunderskov, Denmark) equipped with
a high frequency generator (range of 25-35 kHz). Contact angle measurements were carried
out using the OCA-20 system in sessile drop configuration using single drops of water and
diiodomethane of 0.5 pL. The final water and diiodomethane contact angle values were the
average of 10 measurements carried out on each sample. The total surface energy of the
substrates and its components were evaluated by the OWRK (Owens, Wendt, Rabel and
Kaelble) method using SCA 20 software.

PVDF adhesion on corona-treated PET-ITO was evaluated by a tape test.

Structural characterization of the printed PVDF films was evaluated through Raman
spectroscopy and XRD analysis. The measurements were carried out on the PVDF layers
printed on aluminum foil only, due to the superimposition of PVDF signals with the
broad signals of the PET substrate. Raman measurements were performed through a
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Renishaw InVia Reflex Raman spectrometer, using a laser wavelength of 514.5 nm (laser
power 100%) and a 100x-magnification objective. The investigated wavelength range
was 300—1500 cm~!. For each sample, 20 subsequent accumulations were acquired with
an exposure time of 20 s. The band assignment to the specific vibrations in the PVDF
is reported in Table S1 [65-69]. The XRD results were obtained using a X'Pert MDP
DY872 X-ray diffractometer (Malvern Panalytical Ltd., Malvern, UK) with Cu-K« radiation
(wavelength 0.154 nm) operating at 40 kV and 40 mA. The samples were scanned in thin-
film configuration in a 20 range of 5° to 80° with a step interval of 0.05°and a step time of
10 s.

Capacitive device samples with an area of 1 cm x 1 cm were prepared by spraying a
Cu-based varnish (by RS components, Corby, UK) through a stencil to deposit the upper
contact on the PVDF printed films.

Dielectric displacement versus electrical field (D-E) hysteresis loop measurements
were performed at room temperature on some prepared capacitors by means of a home-
made Sawyer-Tower circuit. In detail, the series comprised a reference capacitor of 1.1 nF
(ELC capacitance decade box DC05) and the device under test was connected to an arbi-
trary function generator (RS PRO AFG-21125, RS components, Corby, UK) supplying a
continuous triangular wave signal having an amplitude of 5 Vpp, a voltage bias of 0 V and
a frequency of 50 Hz. The output of the Sawyer-Tower circuit was measured through a
digitizing oscilloscope (LeCroy Waverunner LT344 Digital Storage Oscilloscope, LeCroy,
New York, NY, USA) by acquiring the voltage on the reference capacitor.

Finally, the pyroelectric properties of the printed films were evaluated using an ex-
perimental set-up able to impose controlled temperature change on a planar device and to
record the thermally stimulated short-circuit current with time. In particular, the equipment
was composed of a Linkam HFS600E-PB4 test chamber equipped with a programmable
Linkam T96 thermal controller and cooled through a Linkam LNP96 liquid nitrogen system
imposing thermal gradients. A Keysight B2985A electrometer was connected to the device
through shielded cables and BNC connectors to measure the current values. A computer
equipped with custom-made software written in Python with PYVISA libraries was used to
log current vs. time data series. The evaluation of the pyroelectric coefficients was carried
out using measurements performed during the heating ramp, since the thermal stage could
guarantee suitable temperature rate stability only during such a ramp. p was calculated as
the average of the pyroelectric coefficients obtained from the maximum measured currents
ip, divided by the nominal temperature rates during the heating steps.

3. Results and Discussion
3.1. Overview on the Gravure Printable Pyroelectric Devices

Based on the operating principle of an elementary pyroelectric generator described
above, the simplest configuration is a flat and parallel face capacitor [70], where a printed
PVDF layer is stacked between two electrodes defining the active heat exchange area. The
lower electrode forms the printing substrate. The upper electrode is subsequently placed
on the top of the printed PVDFE.

Printing requires the functional material to be deposited in solution form [38,71].
Mainly because of this, an important challenge is the control of the PVDF film-forming
microstructure to achieve a significant level of polarization. In fact, as Equation (1) implies,
the current depends strongly on the spontaneous polarization Ps of the pyroelectric mate-
rial [5,18]. To meet this need, the kinetic conditionings over the physical processes involved
in printing and/or the use of pre- or post-printing chemical-physical treatments require to
be considered, as discussed below.

Among industrial printing techniques, gravure is the technique most used in the
production of newspapers, magazines, currency and packaging, as it combines very high
printing speed (over hundreds of meters per minute) with high resolution (down to 2 um)
and it is compatible with roll-to-roll processes [72-77]. This technique is characterized by
the direct transfer of a low viscosity ink (1-100 mPa-s) from the micro-engraved cells of a
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chromium-plated cylinder to a substrate by means of the pressure of a counter-cylinder, as
depicted in Figure 1 [78]. A doctor blade removes the excessive ink from the unengraved
surfaces of the cylinder.

Pressure
cylinder

Printing
Substrate direction

-

Gravure

Doctor cylinder

blade

Figure 1. Schematic of typical roto-gravure printing operation principle.

Despite its strengths, the low viscosity ink requirement represents a potential limit
for gravure-printing-based devices because of the difficulty in achieving adequate film
thickness. To address this issue, a multi-layered approach can be pursued [79,80].

Several physical parameters of the ink (e.g., viscosity, surface tension, solvent evapora-
tion rate) and of the substrate (e.g., surface energy, porosity, smoothness), together with the
process parameters (e.g., cells geometry and density, printing pressure, speed), contribute
to determine the final quality of the printed film [38,75,78,81]. Preliminary printing tests
are necessary for properly identifying the optimal operating windows of all the involved
parameters, because of their interplay roles. [72].

The gravure printing process can be seen as a sequence of sub-processes (inking, doc-
toring, transfer, spreading, drying), each with its ideal operating regime controlling the final
material arrangement in the printed layer [78]. Due to the complex multi-physical nature of
this process, involving capillarity, viscoelasticity, inertia, gravity, moving contact lines and
solvent evaporation changing ink composition, dimensional analysis can represent a useful
tool for studying the physical system behavior [71,82,83]. At the microscopic level, the fluid
dynamics of the gravure printing process are governed by the balance between viscous
and surface tension forces, where the latter are the driving forces [71,84]. Consequently, the
balance determines the printed pattern/shape morphology and fidelity [75]. At a particular
printing speed (U), the capillary number Ca =nU/y (where 1 and y are the viscosity and
the surface tension of the ink respectively) can be used to describe the system during each
stage of the process [39,52,78,84]. Typically, optimal printing can be achieved by tuning ink
parameters and the print speed to attain a Ca ~ 1 [75], but deviations could be considered
to reach an optimal regime [71].

3.2. PVDF Ink Formulation

The first objective was to develop a PVDF-based gravure printable fluid (ink). To
properly formulate a stable functional ink, different chemical-physical parameters, such
as solubility, concentration, viscosity and surface tension need to be considered to ensure
both the correct gravure printing processability and the specific characteristics for the
functionality of the forming pyroelectric film.

First, the PVDF must be dissolved and appropriately diluted in a solvent to obtain
a suitable viscosity [85-87]. Secondly, the ink concentration should be sufficiently high
to obtain an adequate substrate coverage of the printed film, providing a dense polymer
interconnection which is mainly responsible for the film transport properties [85]. However,
the ink concentration needs to be properly adjusted, since it also contributes to determine
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the viscosity and the rheological behavior of the ink, together with the solvent—solvent and
solvent—polymer interactions [78,88]. Moreover, the solvent also fulfills the important role
of adjusting the ink surface tension on which the ink wettability depends [86]. In particular,
to attain adequate wettability, the surface tension of the ink must be lower than the surface
energy of the chromed engraved cylinder (42 mN/m) and of the printing substrate to favor
the inking and transfer stages of the printing process [88,89]. Consequently, the quality
of a printed film significantly depends on good substrate-ink interaction [52,90], however,
this is only a prerequisite for obtaining good printing quality, since this is also strongly
dependent on an appropriate choice of all the parameters involved in the gravure printing
process. Finally, another fundamental parameter is the solvent evaporation rate, which
controls the drying stage and determines the final morphology and microstructure of the
solid film [78,86,89].

Therefore, obtaining the correct printing ink formulation is a complex task, involving
several parameters, so that preliminary inking tests need to be conducted to identify
the appropriate operating ranges to achieve the desired print quality. However, in the
specific case of pyroelectric films, good printing quality is not sufficient to guarantee film
functionality in a device, since it is essential that the printed film exhibits a significant level
of spontaneous polarization.

From the above, the selection of the solvent is crucial for PVDF ink formulation.
Due to their strong intermolecular interactions, few solvents can adequately dissolve
the PVDF, or in a reasonable time [91]. Furthermore, once dissolved, PVDF tends to
crystallize in its non-polar o phase, which is the most thermodynamically stable [58,59,87].
Nonetheless, the possibility of inducing phase transitions using high polar solvents has
been observed [59,61,62,65,92,93]. In particular, N-methyl-2-pyrrolidone (NMP) and N,
N-dimethylformamide (DMF) are the most used solvents, although they are expensive and
have a high environmental impact [55,94-97].

To promote printing as an innovative and sustainable process for the production of
low-cost and low environmental impact pyroelectric devices, dimethyl sulfoxide (DMSQO)
was chosen as the primary high polar solvent (dielectric constant, ¢ = 47), which favors
the formation of 3-PVDF as recently reported [59,62,87]. However, its high boiling point
(189 °C) appears unsuitable for the rapid and low-cost gravure printing process, requiring
high thermal powers for the complete drying of the printed film. Furthermore, high drying
temperatures can favor PVDF crystallization in its non-polar o phase, which must be
avoided for pyroelectric applications. Therefore, it was decided to use acetone as a co-
solvent, since it is also a polar solvent (¢ = 21), has low toxicity and a very low boiling point
(56 °C) [97]. In addition, acetone has the further advantage of being able to decrease the
surface tension of the PVDF-DMSO solution, as shown in Table S2. As expected, the acetone
provokes a strong decrease in the ink surface tension, while the PVDF has a negligible
effect in the investigated range of concentration. Such a decrease in the surface tension is
essential for improving the PVDF ink printability [86].

After several preliminary dissolution and ink depositing tests simply using a wire-bar
coating technique (see Appendix A), the 50/50% w/w of DMSO/acetone solution was
selected as the best solvent for PVDF ink, because it showed the shortest PVDF dissolution
time (1 h at 60 °C) and the best compromise between film drying time (30 min) and the
development of PVDF polar phases, drying the ink film at a low temperature (50 °C). Such
a low drying temperature was chosen because it has been reported that crystallization
of the « phase is favored above 60 °C, becoming more and more predominant as the
temperature increases [54,59,94]; moreover, exceeding 60 °C could deteriorate the PVDF
film ferroelectric properties during multistep processes such as multilayer printing [26].
The structural characterization of the as-prepared PVDF film showed a high content of
electroactive phases (see Figures S1 and S2 and Figure A1), satisfying the first requirement
for possible PVDEF pyroelectric functionality.
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3.3. Tuning of the Gravure Printing Process of the PVDF Film

Low surface tension and viscosity characteristics are the basic requirements for an
ink to be gravure printable and are fundamentally determined by the solvent system.
Nonetheless, these properties do not by themselves ensure a good quality of final printed
film, as this is also greatly dependent on the appropriate combination of all the other
process parameters, such as the engraved cell geometry and density, the printing pressure
and speed, and the drying conditions [39,78].

Therefore, several preliminary printing tests were carried out using PVDF inks diluted
by 50/50% w/w of DMSO/acetone, varying the PVDF concentration (in a relevant range
for gravure printing of 8 wt%—15 wt% of polymer), printing speed (12-60 m/min) and force
(300-700 N), to investigate the optimal process parameters, namely, Ca values of about 1
(see Table S3). For such tests, the electronic engraving of the employed printing cylinder
was used, having an inverted pyramidal cell geometry and a very high cell volume, to
produce high substrate coverage and to maximize the ink film thickness. Once printed, the
samples were dried in an oven at a temperature of 50 °C for 30 min. Once dried, inks with
a PVDF solid content > 12 wt% exhibited poor print quality characterized by the presence
of voids and defects, essentially due to the high viscosity of the ink (Ca ~ 2), which did
not allow optimal inking and ink transfer stages (see Figure S3a). Inks having a PVDF
solid content < 12 wt% produced films without macroscopic defects; using these inks,
the best printing conditions in terms of resolution were found to be 500 N and 36 m/min
(see Figure S3b).

To avoid the occurrence of possible micro-short circuits in the device, multilayer print-
ing was performed to reach a PVDF film thickness of approximately 1 um (see Table 54).
The multilayer printing tests were executed by varying the concentration of the inks to be
overlapped to mitigate surface roughness increase, as demonstrated elsewhere [79]. The
high roughness caused by the multilayer deposition could limit the PVDF performance
because of a non-optimal film/electrode interface. The best result (Sq of 0.10 £ 0.03 um) was
obtained by progressively printing five inks having decreasing concentrations of 12 wt%,
11 wt%, 10 wt%, 9 wt% and 8 wt% of PVDF, respectively, leaving unchanged the other
process parameters, simplifying the overall printing process.

The final multilayer PVDF film was characterized by X-ray diffraction to analyze its
crystalline phases (see Figure 2). As can be seen, there was a dominant broad signal centered
at 20 = 20.6°, mainly attributed to the presence of both 3 and y phases; the shoulder on
the left of this peak is given by the sum of the « and 'y phase contributions [98]. The area
under the substrate peak at 17.3 was also attributed to amorphous PVDF [99]. Furthermore,
the observed broadening of the PVDF signal was due to the roughness of the printed
samples [100] and/or to the small size of crystallites. The overlapping of the printed layers
did not seem to alter the electroactive phases and « phase ratio. Therefore, the prepared
multilayer showed high polar phases fractions (3 and y), which is the primary requirement
for a possible pyroelectric response of PVDF printed film. Secondly, it was essential to
have a high degree of dipole alignment in the film [8,10,18]—the larger this alignment is,
the larger is the output of the generator [10]; in particular, the maximum condition for the
capacitor is that its spontaneous polarization is orthogonal to the electrodes [70].

Controlling this alignment appears to be a particularly critical factor in solution-based
printing processes, since these typically produce homogeneous polycrystalline films having,
in general, random orientations of the crystalline domains, resulting in no macroscopic net
polarization [45-48,101,102]. Consequently, the polycrystalline PVDF should be processed
to orientate ideally all its crystalline domains to be normal to the substrate (electrode) for
the pyroelectric application [2,45,70].

Therefore, as an alignment method compatible with the printing process, the corona
pre-treatment of the substrate was considered. Corona treatment is currently the most used
in-line process in the printing industry to modify the surface energy of a substrate, making
it more wettable and therefore printable [103,104]. Corona treatment consists in producing
a high-frequency electrical discharge able to break the surface molecular bonds of the sub-
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strate, creating free radicals able to form new surface functional groups [105]. Recently, it
has been reported that, by depositing the PVDF from solution onto a hydrophilic substrate,
it is possible to obtain self-polarization of the dipoles orthogonally to the substrate, through
substrate-PVDF interaction via hydrogen bonds [51]. Since the corona discharge is per-
formed in the air, the free radicals that superficially form on the substrate can interact and
combine with oxygen and water atoms, resulting in hydrophilic polar functions [103,104].

—1L
Al —2l.
—3L
—4L
—5L

Intensity(a.u.)

15 20 25
2theta (degrees)

Figure 2. X-ray diffraction data (Cu K«) of 5-layer (5L) PVDF film obtained by gravure printing inks
with decreasing concentration on an aluminum foil.

To confirm this hypothesis, a contact angle characterization of corona-treated PET-
ITO substrates was performed (see Figure 3). The treatment tests were conducted at a
nominal power of 120 W; lower powers were not examined since they were found to
be insufficient to provide adequate ITO wettability (see Figure S4), while no differences
in the ink printability were observed by setting higher power values. Figure 3A shows
the results of water and diiodomethane contact angle measurements and the surface
energy values estimated for the treated substrates with increasing time. As can be seen,
the contact angles strongly decreased with corona treatment time resulting in higher
substrate hydrophilicity. This behavior was due to increase in the total surface energy
of the substrates (Figure 3B). In particular, the polar component increased more than the
dispersed component, suggesting a larger presence of the polar functions on the treated
surface of the ITO [106,107]. Furthermore, the pre-treatment of the substrate increased the
PVDF adhesion and did not appear to alter the crystallization of the PVDF in terms of
amount and crystalline structure, as shown in Figure S5.

90 T T T T T T 90 T T T T T T
so} (A) ] 80 ]
g 70 . § 70 1
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= >
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time of corona treatment (s) time of corona treatment (s)

Figure 3. (A) Water and diiodomethane contact angles. (B) Total surface energy and its polar and
dispersed components measured onto PET-ITO after different times of corona treatment at a nominal
power of 120 W.
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To evaluate the ferroelectric response of the as-prepared PVDF films, D-E hysteresis
loops were also performed on some representative capacitor-like samples (see Figure 4).
As can be seen, the multilayer printed PVDF showed large hysteresis loops indicating
the presence of domains of spontaneously oriented polarization, namely a net remnant
polarization moment. This result supports the hypothesis that the superficial hydrophilic
groups of the corona-treated substrate can form hydrogen bonds with fluorine atoms of the
PVDF triggering a layer-by-layer alignment mechanism across the multilayer [108,109].

Displacement Field, O (£C/m?)
o

-6 -4 -2 0 2 4 6
Electric Field, £(MV/m)

Figure 4. Dielectric displacement versus electrical field hysteresis loop measured for multilayer PVDF
device gravure printed on corona-treated PET-ITO substrate. Example of gravure printed PVDF
device as an inset.

3.4. Functional Characterization of the Printed Devices

Finally, representative prepared capacitor devices were functionally characterized by
imposing controlled thermal ramps at different nominal rates (0.8, 1.7, 2.1 and 2.5K/s)
between 30 and 45 °C setpoints and measuring the short-circuit current i, during the heating
ramp (see Figure S6). Figure 5 shows an example of data acquisition, while in Table 1 the
measured current and the pyroelectric coefficient p obtained by Equation (1) are reported. As
can be seen, the obtained trends were compatible with pyroelectric phenomena: the measured
electric current was proportional to the dT/dt profile and the time intervals of the null-measured
electric current were identified and related to time intervals having constant temperature
(null 4T/dt). Moreover, the modulus of the pyroelectric current increased proportionally to
the temperature rate. Such observations are expected from pyroelectric theory and appear
coherent with the given model (Equation (1)). In addition, the pyroelectric characteristics
appeared to increase as the corona pre-treatment time increased, confirming that the PVDF
film self-poling mechanism, generated by the hydrophilic properties of the treated substrate,
was able to vertically align the polymer dipoles.

The measured performances were lower than those reported for most of the pyro-
electrics [19,70]. However, since, to date, there have been no examples of pyroelectric devices
produced by gravure printing, there is the potential for further performance optimization.

Due to their novelty, the results obtained appear to be very significant from a techno-
logical point of view, and considering the high sustainability of the production processes,
as well as for the potential to upscale the active area of the device and the production level.

Therefore, our results support the study of printed pyroelectric devices, especially
considering the low expected thermal inertia and the favorable area scaling rules that
characterize thin-film pyroelectric devices [15,19,23,24,30]. Highly scalable [52,110], and
industrially widespread, large-area gravure printing [36,75] enables the deposition of
high-quality layers at low cost, compensating for the possible performance limits of small
deviceseven by connecting a large number of them.
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Figure 5. Example of temperature and electric current measured vs. time for a multilayer PVDF

device gravure printed on a corona pre-treated PET-ITO substrate.

Table 1. Values of pyroelectric currents (i) measured for different nominal rates on multilayer PVDF
devices printed on corona-treated PET-ITO substrate at nominal power of 120 W as the treatment
time; the average of the pyroelectric coefficient (p) is also reported.

Nominal Rate dT/dt

] : iy P
Corona Pre-Treatment Time(s) (K/s) (pA) nC-m—2-K-1)
0.8 —91+1.1
1.7 161 +0.1
4 21 ~189+03 —96+9
25 220401
0.8 201+ 0.1
17 407 407
16 2.1 —5204 0.4 A2 ET
25 581475
0.8 347 +112
17 731407
64 2.1 ~892 +0.1 —427+9
25 ~105. 8+ 1.3

There is the potential for further development to optimize the gravure printing process for
production of pyroelectric devices and to improve the performance reported here. For example,
opportunities include optimizing gravure cell geometry, reducing process times, assessing other
poling methods compatible with printing, enhancing PVDF electroactive phase formation, using
more performing PVDF co-polymers, and introducing ferroelectric nanofillers.

4. Conclusions

In this study, the application of highly scalable and industrially used gravure printing
as an innovative and low-cost production method for the potential manufacture of pyro-
electric devices was investigated. For the first time, due to a self-poling mechanism induced
by corona pre-treatment of the printing substrate and to crystallization by low temperature
polar solvent evaporation, multilayer gravure-printed PVDF thin-film pyroelectric devices
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have been successfully realized, without any poling post-processing step. Given the very
low thermal inertia and surface-scaling performance expected for such devices, and the
upscaling and customization potential of roll-to-roll gravure printing, the obtained results
open new opportunities for the future development of flexible, cost-effective, on-demand
pyroelectric devices and hybrid harvesters.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/coatings12071020/s1: Table S1: Raman bands assignment identified
for the PVDEF; Table S2: Results of surface tension measurements carried out on PVDF diluted in
DMSO/ Acetone solutions; Table S3: Preliminary printing tests results changing PVDF ink concentration,
printing speed and force (ranking: ++ = Best quality /high resolution; + = Medium quality/acceptable
resolution; - = Low quality /low resolution; X = Poor quality /layer defects). The printing results were
the same for both Aluminum foil and PET-ITO substrates; Table S4: Layer characteristics of the gravure
printed PVDF on Aluminum foil and PET-ITO substrates; Figure S1: Typical Raman spectrum of a PVDF
film deposited on Aluminum foil by wire-bar coating; Figure S2: X-rays data of PVDF film obtained
by depositing PVDF (15 wt%) dissolved in a mixture of 50/50 (%w/w) DMSO/acetone on Aluminum
foil; Figure S3: Examples of preliminary printing tests on Aluminum foil: defects obtained using 15 wt%
PVDF ink (a); high printing quality using 10 wt% PVDF ink (b); Figure S4: Example of gravure printed
PVDF on PET-ITO substrate pre-treated by Corona at a power of 50 W; Figure S5: X-ray diffraction
patterns (Cu K«) of a gravure printed multilayer PVDF film (5 layers) on Aluminum foil: pristine (NT)
and treated by corona at the nominal power of 120 W for 64 s (64); Figure S6: Temperature and electric
current vs time for a multilayer PVDF device printed on a PET-ITO substrate treated by Corona at a
nominal power of 120 W for 64 s.
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Appendix A

Preliminary tests were carried out to verify PVDF (10 wt%-20 wt%) dissolution in the
DMSO. Up to 60 °C, the dissolution of the PVDF was observed over a relatively long time
(about 4 h); higher temperatures resulted in more rapid dissolution but also a yellowing
of the solutions and, consequently, have not been used. Acetone was used as a co-solvent
to reduce the PVDF dissolution time and to adjust the surface tension (see Table S2) and
drying rate of the PVDF ink. Once the PVDF concentration (15 wt%) was fixed, different
mixtures were tested to determine the optimal DMSO/acetone ratio (%w/w), in terms of
dissolution and drying times, and PVDF electroactive phase development of the deposited
ink film. The solutions with low acetone quantities (<50 wt%) showed long dissolution
times, similar to pure DMSO; the shortest dissolution time (1h) was obtained using a
50/50% w/w solution of DMSO/ acetone.

The prepared solutions (viscosity of 68 mPa-s at 25 °C) were deposited on an aluminum
foil via a wire-bar coater to evaluate the morphological characteristics and the crystallization
of the PVDF films. For the deposition, a standard green k bar (wire diameter of 0.31 mm,
depth of 24 um) was used. Macroscopically, no differences were observed in applying the
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different solutions, which appeared uniform and eye-defects free. The deposited films were
then dried in an oven at 50 °C for one hour before characterization.

Figure S1 shows a typical Raman spectrum of a prepared PVDF film measured in
the region 300-1400 cm~!. The assignments of the bands to the specific vibrations in the
polymer chain are reported in Table S1. As most researchers attribute the bands at 514 cm ™!
to the B, 799 cm ! to the «, 812 cm ™! to the vy and 840 cm ™! to both the  and y phases,
respectively, only these bands were considered in this study [65-69]. To estimate the relative
content of each phase in the prepared films due to the presence of acetone, the intensity
of the most representative peaks of each phase («, 3, v) was related to the band generally
attributed to the 3 and/or y phase in the sample (see Figure Al). The intensity ratios
Ia/I(g+y) and I /1 g+~ quickly decreased by increasing the acetone concentration while
the I /1) was about constant. Although the use of a low polar and boiling solvent may
favor the « phase, the results do not seem to confirm such a hypothesis. In fact, the final
effect of the solvent mixture on PDVF polymorph behavior was complex and influenced
by several parameters: the solvent polarity, the evaporation rate, and the post-deposition
annealing conditions [87].

Therefore, the 50/50% w/w DMSO/acetone solution was selected as the optimal
mixed solvent ratio for making PVDF printing inks, because it showed the shortest PVDF
dissolution time (1 h) and the best compromise between the film drying time (30 min) and
the development of PVDF polar phases drying at 50 °C. In fact, using more DMSO than
50 wt%, the complete drying of the PVDF films at 50 °C was very slow (up to 2 h in the
case of pure DMSO), due to its high boiling temperature (189 °C). Conversely, using more
than 50 wt% of acetone, the film drying time was greatly reduced, due to the low boiling
point of acetone (56 °C), but favoring the growth of the « phase (see Figure A1).

To confirm the crystalline phases of the PVDEF, the film prepared using 50/50%
w/w DMSO/acetone solution was also characterized by X-ray diffraction, as reported
in Figure S2. The diffractogram confirmed a high fraction of electroactive PVDF in the
prepared samples, showing a dominant peak at 20 = 20.4°, which was mainly attributed to
the v and (3 phases [54,98]. Indeed, the vy phase had a higher peak at 20.3° and two lower
peaks at about 18.5° and 39°, while the (3 phase diffraction peaks were at 20.6 and 36.3° [98].
The shoulder was due to both the ¥ and « phases; the & phase was characterized by three
peaks at about 26 =17.7°, 18.6° and 19.9° and a weak peak at about 35.9° [54]. Furthermore,
the substrate signals were present at 17.2° and 44.8°.

1.1 ; ; ; ; . ; .
. " IOt/I(B+Y) 1
>
& 09y * Il ]
— 0.8 ~ [ I/I T
~ o7t YOG |
=o06F .
Qosf e 3——F
N B R S
— o3} o, . .

0 10 20 30 40 50 60 70 80
acetone (wt%) in DMSO:acetone mixture

Figure Al. Intensity ratios of the bands centered at 799 em~! (form o), 514 cm ™! (form B), and
812 cm~! (form vy), with the band at 840 cm ™1 (attributed to polar forms (3 and v), measured for
PVDF films produced by wire-bar coating, using inks with different DMSO/acetone ratio.
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