Robust Superhydrophobic Coating with Mullite Fiber Framework
Abstract
:1. Introduction
2. Experimental Part
2.1. Main Raw Materials
2.2. Preparation of Alcoholic Sols
2.3. Sample Preparation
2.4. Characterization Methods
3. Results and Discussion
3.1. Nano-Silica Properties after PFDTS Modification
3.2. Characterization of Mullite Layer
3.3. Effect of Different Treatments on Surface Wettability
3.4. Self-Cleaning and Stability
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, Y.; Xue, J.; Wang, Q.; Chen, Q.; Ding, J. Verification of icephobic/anti-icing properties of a superhydrophobic surface. ACS Appl. Mater. Interfaces 2013, 5, 3370–3381. [Google Scholar] [CrossRef] [PubMed]
- Vazirinasab, E.; Jafari, R.; Momen, G. Application of superhydrophobic coatings as a corrosion barrier: A review. Surf. Coat. Technol. 2018, 341, 40–56. [Google Scholar] [CrossRef]
- Lu, Y.; Sathasivam, S.; Song, J.; Crick, C.R.; Carmalt, C.J.; Parkin, I.P. Repellent materials. Robust self-cleaning surfaces that function when exposed to either air or oil. Science 2015, 347, 1132–1135. [Google Scholar] [CrossRef]
- Yuan, J.; Liu, X.; Akbulut, O.; Hu, J.; Suib, S.L.; Kong, J.; Stellacci, F. Superwetting nanowire membranes for selective absorption. Nat. Nanotechnol. 2008, 3, 332–336. [Google Scholar] [CrossRef]
- Dhyani, A.; Wang, J.; Halvey, A.K.; Macdonald, B.; Mehta, G.; Tuteja, A. Design and applications of surfaces that control the accretion of matter. Science 2021, 373, eaba5010. [Google Scholar] [CrossRef] [PubMed]
- McBride, S.A.; Girard, H.L.; Varanasi, K.K. Crystal critters: Self-ejection of crystals from heated, superhydrophobic surfaces. Sci. Adv. 2021, 7, eabe6960. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Zhao, J.; Qu, W.; Li, X.; Wang, Z. One-step, low-cost, mussel-inspired green method to prepare superhydrophobic nanostructured surfaces having durability, efficiency, and wide applicability. J. Colloid Interface Sci. 2020, 580, 211–222. [Google Scholar] [CrossRef]
- Yu, F.; Wang, D.; Yang, J.; Zhang, W.; Deng, X. Durable Super-repellent Surfaces: From Solid–Liquid Interaction to Applications. Acc. Mater. Res. 2021, 2, 920–932. [Google Scholar] [CrossRef]
- Zhong, W.; Liao, H.; Wu, M.; Xiong, B.; Zhan, W. Superhydrophobic surface based on the self-growing structure of BaAl2Si2O8 glass-ceramics. Ceram. Int. 2022, 48, 1990–1998. [Google Scholar] [CrossRef]
- Li, X.; Jiang, Y.; Tan, X.; Zhang, Z.; Jiang, Z.; Lian, J.; Wen, C.; Ren, L. Superhydrophobic brass surfaces with tunable water adhesion fabricated by laser texturing followed by heat treatment and their anti-corrosion ability. Appl. Surf. Sci. 2022, 575, 151596. [Google Scholar] [CrossRef]
- Yin, X.; Yu, S.; Wang, K.; Cheng, R.; Lv, Z. Fluorine-free preparation of self-healing and anti-fouling superhydrophobic Ni3S2 coating on 304 stainless steel. Chem. Eng. J. 2020, 394, 124925. [Google Scholar] [CrossRef]
- Fu, H.; Liu, S.; Yi, L.; Jiang, H.; Li, C.; Chen, Y. A Durable and Self-Cleaning Superhydrophobic Surface Prepared by Precipitating Flower-Like Crystals on a Glass-Ceramic Surface. Materials 2020, 13, 1642. [Google Scholar] [CrossRef] [Green Version]
- Xiu, Y.; Hess, D.W.; Wong, C.P. UV and thermally stable superhydrophobic coatings from sol-gel processing. J. Colloid Interface Sci. 2008, 326, 465–470. [Google Scholar] [CrossRef] [PubMed]
- Li, A.; Jia, Y.; Zhang, F.; Zhao, Y.; Zhang, F. The Effects of Zinc Oxide/Silicon Dioxide Composite Coating on Surface Wettability and the Mechanical Properties of Paper Mulching Film. Coatings 2022, 12, 555. [Google Scholar] [CrossRef]
- Taurino, R.; Fabbri, E.; Pospiech, D.; Synytska, A.; Messori, M. Preparation of scratch resistant superhydrophobic hybrid coatings by sol–gel process. Prog. Org. Coat. 2014, 77, 1635–1641. [Google Scholar] [CrossRef]
- Gong, A.; Zheng, Y.; Yang, Z.; Guo, X.; Gao, Y.; Li, X. Spray fabrication of superhydrophobic coating on aluminum alloy for corrosion mitigation. Mater. Today Commun. 2021, 26, 101828. [Google Scholar] [CrossRef]
- Gao, S.; Dong, X.; Huang, J.; Li, S.; Li, Y.; Chen, Z.; Lai, Y. Rational construction of highly transparent superhydrophobic coatings based on a non-particle, fluorine-free and water-rich system for versatile oil-water separation. Chem. Eng. J. 2018, 333, 621–629. [Google Scholar] [CrossRef]
- Zhang, L.; Zhou, A.G.; Sun, B.R.; Chen, K.S.; Yu, H.Z. Functional and versatile superhydrophobic coatings via stoichiometric silanization. Nat. Commun. 2021, 12, 982. [Google Scholar] [CrossRef]
- Feng, L.; Li, S.; Li, Y.; Li, H.; Zhang, L.; Zhai, J.; Song, Y.; Liu, B.; Jiang, L.; Zhu, D. Super-Hydrophobic Surfaces: From Natural to Artificial. Adv. Mater. 2002, 14, 1857–1860. [Google Scholar] [CrossRef]
- Yu, X.; Liu, X.; Shi, X.; Zhang, Z.; Wang, H.; Feng, L. SiO2 nanoparticle-based superhydrophobic spray and multi-functional surfaces by a facile and scalable method. Ceram. Int. 2019, 45, 15741–15744. [Google Scholar] [CrossRef]
- Tang, Y.; Yang, X.; Li, Y.; Lu, Y.; Zhu, D. Robust Micro-Nanostructured Superhydrophobic Surfaces for Long-Term Dropwise Condensation. Nano Lett. 2021, 21, 9824–9833. [Google Scholar] [CrossRef] [PubMed]
- Zhu, R.; Liu, M.; Hou, Y.; Zhang, L.; Li, M.; Wang, D.; Fu, S. One-Pot Preparation of Fluorine-Free Magnetic Superhydrophobic Particles for Controllable Liquid Marbles and Robust Multifunctional Coatings. ACS Appl. Mater. Interfaces 2020, 12, 17004–17017. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Du, H.; Zhao, X.; Wang, X.; Wang, C.; Liu, Z.; Wang, H. Ultrafast Fabrication of a Robust Superwetting Coating. Ind. Eng. Chem. Res. 2021, 60, 15151–15161. [Google Scholar] [CrossRef]
- Dong, Z.; Vuckovac, M.; Cui, W.; Zhou, Q.; Ras, R.H.A.; Levkin, P.A. 3D Printing of Superhydrophobic Objects with Bulk Nanostructure. Adv. Mater. 2021, 33, e2106068. [Google Scholar] [CrossRef]
- Jafari, R.; Cloutier, C.; Allahdini, A.; Momen, G. Recent progress and challenges with 3D printing of patterned hydrophobic and superhydrophobic surfaces. Int. J. Adv. Manuf. Technol. 2019, 103, 1225–1238. [Google Scholar] [CrossRef]
- Rasitha, T.P.; Philip, J. Optimal condition for fabricating mechanically durable superhydrophobic titanium surface by rapid breakdown anodization: Self cleaning and bouncing characteristics. Appl. Surf. Sci. 2022, 585, 152628. [Google Scholar]
- Manoj, T.P.; Rasitha, T.P.; Vanithakumari, S.C.; Anandkumar, B.; George, R.P.; Philip, J. A simple, rapid and single step method for fabricating superhydrophobic titanium surfaces with improved water bouncing and self cleaning properties. Appl. Surf. Sci. 2020, 512, 145636. [Google Scholar] [CrossRef]
- Rasitha, T.P.; Vanithakumari, S.C.; George, R.P.; Philip, J. Template-Free One-Step Electrodeposition Method for Fabrication of Robust Superhydrophobic Coating on Ferritic Steel with Self-Cleaning Ability and Superior Corrosion Resistance. Langmuir 2019, 35, 12665–12679. [Google Scholar] [CrossRef]
- Wang, D.; Sun, Q.; Hokkanen, M.J.; Zhang, C.; Lin, F.Y.; Liu, Q.; Zhu, S.P.; Zhou, T.; Chang, Q.; He, B.; et al. Design of robust superhydrophobic surfaces. Nature 2020, 582, 55–59. [Google Scholar] [CrossRef]
- Xu, M.; Feng, Y.; Li, Z.; Wang, X.; Li, C.; Jiang, H.; Chen, Y. A novel, efficient and cost-effective synthesis technique for the development of superhydrophobic glass surface. J. Alloys Compd. 2019, 781, 1175–1181. [Google Scholar] [CrossRef]
- Sun, Y.; Liu, S.; Sun, L.; Wu, S.; Hu, G.; Pang, X.; Smith, A.T.; Hu, C.; Zeng, S.; Wang, W.; et al. Ultralong lifetime and efficient room temperature phosphorescent carbon dots through multi-confinement structure design. Nat. Commun. 2020, 11, 5591. [Google Scholar] [CrossRef] [PubMed]
- Maier, G.; Glatthaar, J.; Reisenauer, H.P. Dihalodimethylsilanes from silicon atoms and methyl halides: A combined matrix-spectroscopic and density functional theory study. J. Organomet. Chem. 2003, 686, 341–362. [Google Scholar] [CrossRef]
- Marks, J.; Brauman, J.I.; Mead, R.D.; Lykke, K.R.; Lineberger, W.C. Spectroscopy and dynamics of the dipole-supported state of acetyl fluoride enolate anion. J. Chem. Phys. 1988, 88, 6785–6792. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, Y.; Yang, X.; Li, D.; Zhang, X.; Dong, X.; Yao, X.; Liu, J.; Guo, A. High-strength thermal insulating mullite nanofibrous porous ceramics. J. Eur. Ceram. Soc. 2020, 40, 2090–2096. [Google Scholar] [CrossRef]
- Wang, W.; Hou, G.; Wang, B.; Deng, S. Preparation of biomorphic silicon carbide–mullite ceramics using molten salt synthesis. Mater. Chem. Phys. 2014, 147, 198–203. [Google Scholar] [CrossRef]
- Yang, T.; Chen, J.; Li, L.; Chou, K.-C.; Hou, X. Template free synthesis of highly ordered mullite nanowhiskers with exceptional photoluminescence. Ceram. Int. 2015, 41, 9560–9566. [Google Scholar] [CrossRef]
- Zhong, W.; Wu, M.; Xiong, B.; Liu, Q.; Liao, H. High stability superhydrophobic glass-ceramic surface with micro–nano hierarchical structure. Ceram. Int. 2022, 48, 23527–23535. [Google Scholar] [CrossRef]
Na2SO4 | Al2(SO4)3 | Nano-SiO2 |
---|---|---|
66.7% | 29.8% | 3.5% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhong, W.; Hu, S.; Wu, M.; Xiong, B.; Liu, Q.; Jia, Q.; Liu, Y.; Liao, H. Robust Superhydrophobic Coating with Mullite Fiber Framework. Coatings 2022, 12, 1037. https://doi.org/10.3390/coatings12071037
Zhong W, Hu S, Wu M, Xiong B, Liu Q, Jia Q, Liu Y, Liao H. Robust Superhydrophobic Coating with Mullite Fiber Framework. Coatings. 2022; 12(7):1037. https://doi.org/10.3390/coatings12071037
Chicago/Turabian StyleZhong, Wensheng, Shilin Hu, Manyuan Wu, Bichen Xiong, Qiaowen Liu, Qingqing Jia, Yaming Liu, and Hongwei Liao. 2022. "Robust Superhydrophobic Coating with Mullite Fiber Framework" Coatings 12, no. 7: 1037. https://doi.org/10.3390/coatings12071037
APA StyleZhong, W., Hu, S., Wu, M., Xiong, B., Liu, Q., Jia, Q., Liu, Y., & Liao, H. (2022). Robust Superhydrophobic Coating with Mullite Fiber Framework. Coatings, 12(7), 1037. https://doi.org/10.3390/coatings12071037