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Abstract: Multiferroic heterojunctions are promising for application in low-power storage and
spintronics due to their magnetoelectric coupling properties. Controlling the magnetic and transport
properties of magnetic materials by external stimuli and then realizing advanced devices constitute
the key mission in this field. We fabricated a multiferroic heterostructure consisting of a ferroelectric
single-crystal (001)-0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 substrate and an epitaxial 40 nm LaMnO3−x

film. By applying dc electric fields to the ferroelectric substrate, the resistance and the photo-resistance
of the LaMnO3−x film could be significantly modulated. With the electric field increasing from
0 to +4.8 kV/cm, the photo-resistance increased by ~4.1% at room temperature. The curve of photo-
resistance versus the cycling electric field has a butterfly shape due to the piezoelectric strain effect.
Using in situ X-ray diffraction measurements, the linear relationship of the strain and the electric
field was quantitatively studied.

Keywords: multiferroic heterostructure; LaMnO3−x; electric-field-tunable effect

1. Introduction

Multiferroic heterostructures consisting of magnetic materials and ferroelectric insula-
tors have aroused much interest due to their fundamental importance in magnetoelectric
coupling and potential applications [1–6]. By applying the electric field to the ferroelec-
tric layer, one can manipulate the properties of the oxides across the interface, based on
ferroelectric-field-effect-induced charge manipulations, e.g., ferroelectric random access
memory. On the other hand, due to the converse piezoelectric effect, a large reversible
electric-field-induced ferroelastic strain can provide an effective way to achieve the cou-
pling between lattice and other orders such as spontaneous polarization, spin, orbital and
so on [3–5]. It is valuable for designing data-storage, sensing, microwave and magnetoelec-
tric devices with ultralow energy consumption [7,8]. (1 − x)Pb(Mg1/3Nb2/3)O3−xPbTiO3
single crystal exhibits excellent ferroelectric (2Pr~60 µC/cm2) and piezoelectric activities
(d33 > 2000 pC/N, k33~0.9) and has been widely used to fabricate ferroelectric heterostruc-
tures [9–17]. In these heterostructures, the lattice strain, magnetization, resistance, lumines-
cence and magnetoresistance of the films have been modulated by the electric field, leading
to the various applications. Perovskite manganites are typical strongly correlated electron
materials which exhibit strong coupling between multiple degrees of freedom. The lattice
strain can significantly change the Mn-O bond length and Mn-O-Mn bond angle. Thus, the
strength of the double-exchange interaction and Jahn–Teller electron-lattice coupling will be
changed, resulting in remarkable variations in the transport behavior and magnetic phase.
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The strain may introduce various significant effects, such as modulating the resistance,
metal-insulator transition temperature, and magnetoresistance.

Recently, antiferromagnetic piezospintronics, which combine antiferromagnetic spin-
tronics and piezoelectric strain control, has attracted great interest in related studies of
magnetic/ferroelectric heterojunctions [18–20]. Compared with ferromagnets, antiferro-
magnets as memory devices have the advantages of insensitivity to external magnetic
fields, faster spin dynamics, and higher packing density [19]. Controlling the spin of anti-
ferromagnets by external stimuli and then realizing advanced devices according to changes
in their physical properties is a key mission in this field. Bulk LaMnO3 is a typical antiferro-
magnet. However, La-deficiency, non-stoichiometric oxygen, or electronic reconstruction at
the interface can transform it into a ferromagnet [21]. This tunable feature means that the
combination of LaMnO3 and ferroelectric PMN-PT is expected to effectively tune the elec-
trical and magnetic properties of LaMnO3, which is very important for antiferromagnetic
piezospintronics and multiferroic heterostructures.

In this paper, we fabricated a heterostructure consisting of a 0.5 mm-thick ferroelectric
single-crystal (001)-0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 (PMN-PT) substrate and an epitaxial
40 nm-thick LaMnO3−x (LMO) film. By applying electric fields to the PMN-PT substrate
along [001]PMN-PT direction, the lattice strain could be linearly modulated and was trans-
ferred to its epitaxial LMO film. Through adjusting the Jahn–Teller distortion and the Mn-O
bond length, the LMO film resistance and photo-resistance could be significantly modu-
lated. In particular, the photo-resistance could be enhanced by ~4.1% with the electric field
increasing from 0 to +4.8 kV/cm at room temperature. Using in situ X-ray diffraction (XRD)
measurements, the strain manipulation by the electric field was quantitatively studied.

2. Materials and Methods

The LMO thin film (~40 nm thick) was deposited on a PMN-PT(001) single-crystal
substrate with 3× 5 mm2 size and 0.5 mm thickness by pulsed laser deposition [13]. A high-
purity LaMnO3 (99.99%) ceramic target was ablated by a KrF excimer laser (248 nm) with a
pulse-energy density of 1.5 J/cm2 and a repetition rate of 2 Hz. The film was deposited at a
substrate temperature of 650 ◦C under the oxygen pressure of 0.5 Pa and then annealed
in situ under the same conditions for 10 min. After deposition, the sample was cooled to
room temperature at a rate of 5 ◦C/min in an oxygen atmosphere (~1 bar).

The crystal structure of the as-deposited LMO/PMN-PT sample was examined by a
θ–2θ scan using a high-resolution four-circle Bruker D8 Discover X-ray diffractometer (Bruker,
Billerica, MA, USA). A Keithley 6487 voltage source (Tektronix, Solon, OH, USA) was used
for applying the external electric field to the PMN-PT substrate through the LMO film and
the bottom silver electrode. The LMO film served as top electrode due to its relatively small
resistance ~kΩ compared with huge resistance of the PMN-PT substrate ~GΩ. For measuring
the photoresponse property, a semiconductor laser with a wavelength of 650 nm and a power
density of 2 mW/cm2 was used as the light source. The sample was placed in a crystal,
and its film resistance was measured with a Keithley 2400 source meter (Tektronix, Solon,
OH, USA) at a reading current of 1 µA. Figure 1a,b shows schematic illustrations of the
experimental setup for in situ measurement of electric-field-induced out-of-plane strain (using
in situ XRD θ–2θ scans) and film resistance under external electric field across PMN-PT and
light irradiation (using the four-probe method), respectively.
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Figure 1. Schematic illustrations of the experimental setups for in situ measurements of (a) out-of-
plane strain of the LMO/PMN-PT heterostructure and (b) the LMO film resistance, respectively. (c) 
XRD θ–2θ scan pattern of the LMO/PMN-PT heterostructure. (d) The temperature dependence of 
the LMO film resistance when the PMN-PT was nonpolarized Pr0 and positively polarized Pr+. The 
inset shows the polarization vectors of the PMN-PT four structural domains in Pr0 state and Pr+ 
state. 
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of the bulk stoichiometry LaMnO3 (a = b = c = 3.88 Å). The diffraction peaks of cubic 
LMO(00l) overlap with the PMN-PT(00l) peaks, suggesting that the LMO film is highly 
(001)-oriented and single-phase. The phenomenon of the enlarged lattice constant is due 
to the influence of the oxygen vacancies produced during the pulsed-laser-deposition pro-
cesses under a low oxygen pressure. The existence of oxygen vacancies reduces manga-
nese ions to low-valence states, leading to a larger manganese ionic radius and therefore 
a larger lattice constant [22]. Figure 1d shows the temperature dependence of the re-
sistance for the LMO film when the PMN-PT is in the initially nonpolarized state Pr0 and 
fully positively polarized Pr+ state, respectively. Due to the existence of oxygen vacancies, 
the conductivity of as-grown LMO film is greater than that of the antiferromagnetic insu-
lating stoichiometric LaMnO3 film. In the oxygen-deficient LMO film, the eg electrons 
transmit between the Mn2+ and Mn3+, resulting a conducting path [23]. In the initially non-
polarized state Pr0, the eight spontaneous polarization vectors of the PMN-PT crystal ran-
domly point to the four body diagonals of the pseudo-cubic cell, corresponding to four 
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Figure 1. Schematic illustrations of the experimental setups for in situ measurements of (a) out-of-
plane strain of the LMO/PMN-PT heterostructure and (b) the LMO film resistance, respectively.
(c) XRD θ–2θ scan pattern of the LMO/PMN-PT heterostructure. (d) The temperature dependence of
the LMO film resistance when the PMN-PT was nonpolarized Pr0 and positively polarized Pr+. The
inset shows the polarization vectors of the PMN-PT four structural domains in Pr0 state and Pr+ state.

3. Results and Discussions

Figure 1c shows the XRD θ–2θ pattern of the LMO/PMN-PT sample. Only (00l) diffrac-
tion peaks from the pseudo-cubic PMN-PT (a~b~c = 4.02 Å) are observed. Due to the lack of
oxygen content, the lattice constant of the as-grown LMO film is larger than that of the bulk
stoichiometry LaMnO3 (a = b = c = 3.88 Å). The diffraction peaks of cubic LMO(00l) overlap
with the PMN-PT(00l) peaks, suggesting that the LMO film is highly (001)-oriented and
single-phase. The phenomenon of the enlarged lattice constant is due to the influence of
the oxygen vacancies produced during the pulsed-laser-deposition processes under a low
oxygen pressure. The existence of oxygen vacancies reduces manganese ions to low-valence
states, leading to a larger manganese ionic radius and therefore a larger lattice constant [22].
Figure 1d shows the temperature dependence of the resistance for the LMO film when
the PMN-PT is in the initially nonpolarized state Pr0 and fully positively polarized Pr+

state, respectively. Due to the existence of oxygen vacancies, the conductivity of as-grown
LMO film is greater than that of the antiferromagnetic insulating stoichiometric LaMnO3
film. In the oxygen-deficient LMO film, the eg electrons transmit between the Mn2+ and
Mn3+, resulting a conducting path [23]. In the initially nonpolarized state Pr0, the eight
spontaneous polarization vectors of the PMN-PT crystal randomly point to the four body
diagonals of the pseudo-cubic cell, corresponding to four structural domains (r1, r2, r3,
and r4) [see the inset of Figure 1d]. We applied a large DC electric field of +10 kV/cm
to the PMN-PT substrate for 30 min to ensure that the PMN-PT substrate was fully posi-
tively polarized. Upon applying an external electric field larger than the coercive field, the
180◦ (e.g., from r1− to r1+) ferroelectric switching and simultaneous 71◦ (e.g., from r1− to
r3+) and 109◦ (e.g., from r1− to r2+/r4+) ferroelastic switching take place [24]. After fully
positively polarized (Pr+), all the out-of-plane polarization components point downward
(along the [00-1] direction). Similarly, the Pr− states are defined by all the out-of-plane
polarization vectors of the PMN-PT pointing upward.

To investigate the effect of electric field on the LMO/PMN-PT heterostructure, we
firstly measured the LMO film resistance as a function of the external electric field across the
PMN-PT substrate. A direct visualization for the tunable effect by electric field is illustrated
in Figure 2, where the film resistance R is plotted against bipolar electric field E applied
to the PMN-PT substrate. With the increase in the negative E, a non-180◦ polarization
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reorientation occurs near the coercive field EC and gives rise to a nonlinear change in
strain, resulting in an abrupt jump in film resistance near EC [25]. With a further increase
in the negative electric field E (E < −EC), the polarization direction undergoes another
non-180◦ reorientation, accompanied by a sharp drop in the resistance. This two-stage
polarization-reorientation process leads to a 180◦ polarization switching, i.e., the out-of-
plain polarization vector points along [001] direction (denoted by the Pr− state). Moreover,
the R-E curve shows an approximate butterfly-like shape, resembling the butterfly-like
strain curves of the PMN-PT [12]. This feature further confirms the strain-induced nature
of the resistance evolution, which is different from the square resistance hysteresis loops
observed in TiO2−δ/PMN-PT and La1−xBaxMnO3/PbZrxTi1−xO3, where the ferroelectric-
field effect plays a key role in determining the resistance [13,26]. Unlike the normal butterfly-
like strain curves, the film resistance undergoes a sudden drop during the polarization
switching near +EC. When the sample is under the positive electric field along 0→ 3kV/cm,
there is a negative peak of R-E curves where the polarized state Pr+ of PMN-PT switches to
Pr−. Such a negative peak of R is due to the polarization current effect, which has been
discussed by Wu et al. [27].
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Figure 2. The film resistance R as a function of bipolar electric field E at room temperature with (red
cycle) or without (green cycle) light irradiations. The inset shows the dependence of PR on the bipolar
electric field E.

Furthermore, light irradiation was adopted to explore the electric-field effect on the
LMO/PMN-PT heterostructure. A 650 nm (1.9 eV) continuous laser with a power density
of 2 mW/cm2 was applied to irradiate the middle of the sample [see Figure 1b]. Figure 2
shows the film resistance R as a function of the cycling bipolar electric field E under the
laser irradiations at room temperature. A significant light-induced decrease in resistance
(i.e., negative photo-resistance) is observed, which can be attributed to the photoconduc-
tive effect. The band gaps of PMN-PT and LMO are ~3 and ~1.2 eV, respectively [28,29].
Thus, for the insulating LMO, light can generate more carries and enhanced hopping of
small polarons, leading to the delocalization of eg electrons and reduction in the resis-
tance [15,30]. With the bipolar E cycling, the R-E curve displays a similar butterfly shape
with or without light irradiations. For further analyses, the interaction between the electric
field and light stimulations, the electric-field-tunable photo-resistance effect, was studied.
The photo-induced variation in resistance (photo-resistance, PR) of the LMO film, defined
as PR = (RLight − RDark)/RDark, as a function of E is calculated [see the inset of Figure 2].
With the E cycling, PR is significantly modulated, and PR-E curve shows an asymmetri-
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cal butterfly shape, indicating that electric-field-induced strain modulation plays a major
role in the electric-field effect on the LMO/PMN-PT heterostructure. Possibly due to the
ferroelectric-field effect, the PR-E curve for the LMO film shows an asymmetrical shape.

In order to quantitatively study the relationship between the electric field and the
induced lattice strain, we applied a positive electric field E with different strength to the pos-
itively polarized (Pr+) PMN-PT substrate at room temperature and simultaneously in situ
measured XRD θ–2θ curves of the sample. One can see from Figure 3 that the PMN-PT(002)
reflection peak shifts toward the lower 2θ angle when a positive DC electric field is applied,
implying that the out-of-plane lattice of the PMN-PT expands at the positive electric field.
As depicted in the inset of Figure 3 (red circle), the electric-field-induced out-of-plane strain
δεzz of the PMN-PT substrate shows a linear response to the electric field, as calculated from
in situ XRD measurements. Using the Poisson relation δεzz = −2ν/(1− ν)δεxx, where the
Poisson’s ratio ν = 0.5 in a first-order approximation [14], the quantitative relationship
between the electric field E and the induced in-plane strain δεxx can be obtained [see
blue circle in the inset of Figure 3]. Therefore, when the electric field is applied to the
heterostructure, the in-plane (out-of-plane) lattices of the PMN-PT contract (expand). The
electric-field-induced strain in the substrate is assumed to be fully transferred to the thin
film. Hence, the film undergoes an in-plain biaxial compression of known magnitude. Due
to the epitaxial growth of the film, the in-plane lattices variation can be transferred to the
overlying epitaxial LMO film. Such a decrease in the in-plane lattice parameters can impose
a decrease in the Jahn–Teller electron-lattice interaction in the LMO film, thereby favoring
delocalizing of the charge carriers and resulting in lower resistance [31,32]. Meanwhile,
the substrate-imposed compressive strain can also give rise to a decrease in the in-plane
Mn-O bond length in the film and thus an enhancement of the double-exchange interaction,
which leads to an increase in the hopping of charge carriers. This also results in a decrease
in the resistance of the LMO film.
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Figure 3. In situ XRD θ–2θ patterns of the PMN-PT(002) peak under different electric fields (from 0 to
+13 kV/cm). The inset shows the out-of-plane strain δεzz (red cycle) and the corresponding in-plane
strain δεxx (blue cycle) as the function of positive E applied to the positively polarized PMN-PT.

The electric-field-tunable photo responses are shown in Figure 4a, where the photo-
induced variation of the LMO film resistance is recorded by turning the light on and
off with the application of E to the positively polarized PMN-PT at room temperature.
Obviously, the resistance is suppressed under light irradiation, which is commensurate
with the PR-E results [see Figure 2] and stems from the light-induced delocalization of
eg electrons at room temperature. The effect of the E on the photo response is evident in



Coatings 2022, 12, 890 6 of 9

Figure 4b,c, where the relative change in PR (∆PR/PR) of the photo responses and the 1090%
falling time (FT), defined as the time taken for the photoelectric signal to fall from 90% of
its peak value to 10%, is plotted against E. With the increasing in E from 0 to +4.8 kV/cm,
the PR gradually increase by ~4.1% and the FT increase from 3.1 to 4 s, respectively. The
rise time of the signal is similar to the trend of the fall time. It is apparent that the electric-
field-induced ferroelastic (in-plane compressive) strain significantly increases the photo-
resistance. It can be understood that the electric-field-induced strain in the epitaxial LMO
film causes a reduction in the in-plane lattice parameters of the film, which weakens the
Jahn–Teller distortion of MnO6. Consequently, the Jahn–Teller electron-lattice interaction
is reduced, giving rise to the reduction in the energy barrier for the delocalization of eg
electrons. Therefore, light can generate more itinerant electrons and enhance hopping of
small polarons, leading to the increase in the photo-resistance.
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Figure 4. (a) In situ photo responses of the LMO film under different positive E applied to the positively
polarized PMN-PT (from 0 to +4.8 kV/cm). The ∆PR/PR (b) and RT (c) as functions of the electric
field E.

It also should be noted that there is an asymmetric polarization switching behavior of the
LMO/PMN-PT heterostructure (i.e., EC(Pr+→Pr−) =−1.3 kV/cm and EC(Pr−→Pr+) = +0.9 kV/mm
[see Figure 2]), which is known as an imprint effect. The coercive field EC(Pr+→Pr−) and
EC(Pr−→Pr+) are regarded as the intensity of the electric field where the peak value
of resistance happens in the electric-field cycling process [see the inset of Figure 5]. It
is believed that this asymmetric polarization switching behavior is originated from the
domain pinning near the top LMO/PMN-PT interface. As the top electrode for applying
electric field across PMN-PT, the LMO film contains many oxygen vacancies, which pin
the domains near the LMO/PMN-PT interface, and therefore restrains the polarization
switching. The temperature dependence of the coercive field EC of the PMN-PT with or
without light irradiations are depicted in Figure 5. With the decreasing in temperature, the
coercive electric field increases, which results from the relatively complicated ferroelastic
polarization switching of the PMN-PT [11]. With the light irradiations, the shift in the
coercive fields becomes smaller [see in the inset of Figure 5], leading to better symmetry.
In other words, the imprint behaviors are suppressed by the light irradiations. Such a
light modulation of the coercive field and polarizations in LMO/PMN-PT heterostructure
deserves further investigation.
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4. Conclusions

In conclusion, we have reported electric-field-tunable effects on transport and pho-
toelectric properties in the ferroelectric LMO/PMN-PT(001) heterostructure at room tem-
perature. Based on the converse piezoelectric effect, the lattice strain in the ferroelectric
PMN-PT could be linearly tuned by the external electric field, which would be transferred
to its epitaxial LMO film across the interface. Due to the strain effect, the resistance and
photo-resistance of the LMO film could be significantly modulated by the external electric
field, through adjusting the Jahn–Teller distortion and the Mn-O bond length. By this strain
modulation, the photo-resistance of the LMO film could be enhanced by the external electric
fields (up to ~4.1% at E = 4.8 kV/cm). This work points out that in the LMO/PMN-PT
heterojunction, both the electric-field-induced strain effect and the photoelectric effect are
coupled to each other, which can both tune the transport and magnetic properties of LMO.
This work provides opportunities for controlling the spin of LMO by multiple external
stimuli and designing multi-field-sensitive devices.
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