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Abstract: In this study, the modification of macroporous α-Al2O3 ceramics with AlOOH nanos-
tructures impregnated with silver particles is carried out using bicomponent Al/Ag nanoparticles
obtained by the simultaneous electrical explosion of Al and Ag wires. Nanoparticle suspension
impregnation of porous ceramics followed by oxidation with water is shown to lead to the forma-
tion of a continuous AlOOH nanosheet coating on the ceramic surface, with silver releasing on the
surface of nanosheets in the form of individual particles sized 5–30 nm. Modified with AlOOH/Ag
nanostructures, macroporous α-Al2O3 pellets with a diameter of 11 mm and a thickness of 5 mm
show 100% efficiency for water purification from bacteria with a concentration of 105 CFU/mL for
7.5 min at a flow rate of 6.7 mL/min.

Keywords: macroporous ceramics; modification; nanoparticles; oxidation; nanosheets; nanostructured
coating; boehmite; antimicrobial activity

1. Introduction

Macroporous ceramic materials are widely used as particulate filters, hot gas fil-
ters, water purification filters, catalyst carriers, bone implants, etc. [1–5]. These applica-
tions are due to a set of properties inherent in such materials, among which are a high
melting point [6], hardness and strength [7], wear resistance [8], chemical stability [9],
and bioinertness [10].

The most typical representative of macroporous ceramics is Al2O3 (alumina). A variety
of applications of alumina-based ceramic materials are available due to its high strength
and stability resulting from strong ionic and covalent bonds, as well as a high surface area
which allows the production of highly porous materials [11]. Alumina-based ceramics are
used in the production of catalyst carriers [12–14], membrane materials [15–20], gas–liquid
filters [21,22], and sensor materials [23].

However, even with all the above advantages, porous ceramics often need surface
modification, which can be realized by adding various functional groups [24–26] or by the
attachment of nanoparticles [27–32]. Surface modification can improve the sorption and
selective efficiency and antimicrobial and photochemical properties, as well as the catalytic
activity of the porous ceramic materials.

Ceramics surfaces can be modified with nanoparticles formed by physical or chemical
vapor deposition, laser cladding, sol–gel method, etc. [33,34]. However, not all methods are
suitable for the surface modification of porous ceramics. As a rule, wet chemistry methods
are used for this purpose by performing chemical reactions on the ceramic surface [35].
This concerns both the reduction of silver salts on the ceramic surface [36,37] and the
synthesis of complex nanostructures by sol–gel methods [38], chemical grafting [39], and
immersion methods [40].
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The water oxidation of Al/Ag nanoparticles, including those fixed on the macroparti-
cle outermost surface, yields boehmite nanosheet structures with highly specific surface
areas of up to 300 m2/g, decorated with silver nanoparticles of 5–30 nm in size [41,42]. This
approach can be used to modify macroporous alumina ceramics by impregnation in the
suspension of Al/Ag nanoparticles followed by the oxidation of the nanoparticles fixed in
the pore space.

In the present work, for the first time, nanostructured AlOOH/Ag composite coatings
are obtained on the surface of macroporous alumina ceramics using electroexplosive Al/Ag
nanoparticles, which contribute to an increase in antimicrobial activity.

2. Materials and Methods
2.1. Preparation of Alumina Macroporous Ceramics

The initial ceramic composition was obtained by the mechanical mixing of Al2O3
nanopowder (Advanced Powder Technologies LLC, Tomsk, Russia) with a porogenic agent
as irregularly shaped rosin particles sized 300–500 µm, with the rosin particle content
being 80 vol.%. The initial ceramic composition weight, about 0.5 g, was pressed in a
steel mold under a pressure of 130 MPa. The removal of the porogen agent was carried
out by annealing the pressed samples in a muffle furnace (Naberterm LHT 08/18/3310
(Naberterm, Lilienthal, Germany) at 1100 ◦C with isothermal dwelling for 1 h. To sinter the
ceramic material the temperature was increased to 1600 ◦C and kept for 1 h.

2.2. Preparation of Al and Al/Ag Nanoparticles

Al and Al/Ag nanoparticles were obtained by the electrical explosion of Al wires
and twisted Al and Ag wires, respectively, in an argon atmosphere according to the
methods reported previously [43,44]. The Al/Ag ratio of the bi-metallic nanoparticles was
determined by the ratio of metals in the exploded wires. In this work, a twist of two Al
wires with a diameter of 0.35 mm and an Ag wire with a diameter of 0.15 mm was used,
corresponding to the Ag content in the prepared nanoparticles of about 8.4 at. %.

2.3. Formation of a Composite AlOOH/Ag Coating on the Surface of α-Al2O3 Ceramics

A suspension with Al or Al/Ag nanoparticle content of 1 wt.% in ethanol was pre-
pared using an ultrasonic bath. After that, alumina macroporous ceramic disks weighing
about 0.5 g were immersed in the suspension and impregnated for 30 min under constant
ultrasonic irradiation. Then, the samples prepared were removed from the suspension
and dried for 30 min at 60 ◦C. The dried samples were placed in a reactor with 10 mL of
deionized water preheated to 60 ◦C and held for 1 h. During the interaction of aluminum
and water, the amount of hydrogen released was recorded from the displaced volume of
liquid in the communicating vessel system. After the reaction was complete, the samples
were removed and dried at 120 ◦C for 2 h. The amount of immobilized nanoparticles
on the alumina ceramics was determined by the sample mass gain and the amount of
released hydrogen.

2.4. Characterization of Research Objects

Nanoparticles and porous composites were characterized using an XRD-6000 diffrac-
tometer (Shimadzu, Kyoto, Japan) with CuKα radiation. X-ray diffraction was carried out
using the PCPDFWIN database as well as the PowderCell 2.4 software package (W. Kraus&
G.Nolze, Berlin, Germany). The morphology and elemental composition of the nanopar-
ticles and nanostructures were characterized by transmission electron microscopy (TEM)
using a JEM-2100 microscope (JEOL, Tokyo, Japan) with an integrated energy-dispersive
X-Ray spectroscopy (EDS) system X-Max (Oxford Instruments, Abingdon, UK). The average
nanoparticle size was determined from the TEM data, and histograms of the nanoparticle
size distribution were constructed using the sizes of at least 1500 particles measured.

The surface morphology of the composites before and after modification was studied
by scanning electron microscopy (SEM) using an LEO EVO 50 electron microscope (Carl
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Zeiss AG, Jena, Germany) equipped with an INCA-Energy 450 EDS analyzer (Oxford
Instruments, Abingdon, UK).

2.5. Antibacterial Assay

Staphylococcus aureus ATCC 6538-R bacterial culture was used to determine the antimi-
crobial activity of the porous ceramic samples. Using a single-channel peristaltic pump
(JSC LOIP, Saint-Petersburg, Russia), 100 mL of deionized water containing 105 CFU/mL
of bacteria was pumped through the fixed sample of 11 mm in diameter and 5 mm in
thickness at a rate of 6.7 mL/min. Filtrate samples were taken in sterile 10 mL tubes; then,
20 µL was taken from each sample, diluted 10-fold, and 20 µL was inoculated on nutrient
agar into Petri dishes using the track method. Incubation was performed at 37 ◦C for 24 h in
a Binder APT line™ series BF 115 thermostat (Binder, Tuttlingen, Germany). Colonies were
counted using the Scienceware® colony counting system (SP Scienceware, Pequannock, NJ,
USA). The bacterial concentration in the filtrate was determined by taking into account the
dilutions used in the experiment.

3. Results and Discussion

Al and Al/Ag nanopowders were used to form AlOOH and AlOOH/Ag nanostruc-
tured coatings on the surface of macroporous alumina ceramics. Figure 1 shows TEM
images of the nanoparticles used and their size distribution. The particles had a spherical
shape and were covered with an oxide layer 4–5 nm thick. The nanopowders were charac-
terized by a lognormal particle size distribution with the average size of Al nanoparticles
being 89 ± 1.4 nm and Al/Ag nanoparticles being 96 ± 0.7 nm (Figure 1c).
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Figure 1. TEM images of the Al (a) и and Al/Ag (b) nanoparticles and nanoparticle size distribution
curve (c).

The peaks of the diffraction pattern (Figure 2a) correspond to planes 111, 200, 220,
311 and 222 in accordance with a powder diffraction file of the International Centre for
Diffraction Data (ICDD), card No. 00-004-0787. In both cases, the lattice parameters are
standard for aluminum and are 4.049 Å. According to the conventional Williamson−Hall
plot, the crystallite size for Al/Ag nanoparticles is smaller than that for Al nanoparticles
and is 40 ± 2 nm versus 55 ± 2 nm. The absence of Ag peaks in the diffraction pattern of
Al/Ag nanoparticles may be due to its distribution in the particles in the form of X-ray
amorphous clusters (Guinier−Preston zones). This phenomenon is associated with the
formation of an oversaturated Al-based solid solution [45] and is characterized by the
extremely small size of Ag clusters [46–50].
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Figure 2. Diffraction pattern of Al and Al/Ag nanoparticles (a) and TEM-EDS and elemental
distribution maps of Al/Ag nanoparticles (b).

The presence of silver in the nanoparticles was confirmed by TEM-EDS analysis
(Figure 2b). In the TEM-EDS images obtained in the mapping mode, Al and Ag were dis-

tributed within the nanoparticles. The weight ratio of Al to Ag in the sample corresponded
to that of metals in the wires exploded, being 73 and 27 wt.%, respectively. The presence of
Au and C in the spectrum (Figure 2b) was due to the use of formvar/carbon-coated Au
TEM grids.

The properties of Al and Al/Ag nanoparticles, as well as the features of the nanoparticle-
water interaction, have been described in detail previously [51,52].

The macroporous ceramic samples were prepared in the form of 11 mm diameter discs
with a thickness of 5 mm (Figure 3a). To obtain AlOOH and AlOOH/Ag coatings on the
surface of the macroporous ceramics, they were pre-impregnated in 1 wt.% Al or Al/Ag
nanopowder suspension in order to fix the nanoparticles on the surface (Figure 3b). An open
pore system of high porosity and pore size are important for the complete impregnation of
porous ceramics. In this case, the porosity of the alumina ceramic samples was 75% with
an average pore size of 187.2 ± 2.5 µm (Figure 3c).
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Figure 3. Images of the macroporous ceramic samples before (a) and after (b) impregnation with Al
or Al/Ag nanoparticle suspension and pore size distribution curve (c). The disc diameter is 11 mm.
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The amount of hydrogen released as a result of the aluminum−water interaction was
used as an estimate of the amount of fixed nanoparticles on the ceramics (Figure 4). The
obtained kinetic dependences had an S-shape form typical for hydrogen release during the
water oxidation of Al powders [53]. Hydrogen release began after an about 10 min delay
and was completed after 30 min both in the case of the oxidation of Al nanoparticles and in
the case of the oxidation of Al/Ag nanoparticles. The reaction of the fixed Al nanoparticles
with water resulted in the release of 9.4 mL of hydrogen, while the oxidation of Al/Ag
nanoparticles resulted in the release of 5.3 mL. These amounts of hydrogen were released
upon the complete oxidation of 7.5 mg and 4.2 mg of aluminum, respectively.
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Figure 4. Hydrogen release kinetics during water oxidation of Al (black curve) and Al/Ag nanoparti-
cles (red curve) fixed at the alumina ceramics surface.

Figure 5 shows SEM images of the ceramic surface before and after modification. As
can be seen, the pristine ceramic surface had multiple pores, and the ceramic structure
was represented by grains with an average size of 5.1 ± 0.6 µm (Figure 5a). After ceramic
modification by the water oxidation of Al and Al/Ag nanoparticles fixed on its surface, the
formation of continuous porous coating and separate agglomerates of about 1 µm size was
observed (Figure 5b,c). The agglomerates had a nanosheet structure similar to that formed
as a result of the water oxidation of Al and Al/Ag nanopowder [41,52] (Figure 5b,c inset).
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Elemental analysis of the modified samples’ surfaces indicated the presence of silver
in the case of ceramic modification by the oxidation products of Al/Ag nanoparticles
(Figure 5e).

As a result of the modification of porous ceramics by AlOOH/Ag nanostructures,
silver was distributed over the entire surface, and its content according to SEM-EDS analysis
relative to Al and O was 1.5 ± 0.4 wt.% (Figure 6). According to our previous works, the
oxidation of Al/Ag nanoparticles by water yields boehmite nanosheet structures with
silver particles 5–30 nm in size fixed on the nanosheet surface [41]. It should be expected
that similar regularities are preserved during the oxidation of Al/Ag nanoparticles on the
surface of alumina ceramics.

According to the XRD phase analysis (Figure 7), the main diffraction peaks in the
patterns of the studied samples corresponded to α-Al2O3—corundum (ICDD card No.
00-004-0787). The lattice parameters of the pristine α-Al2O3 ceramics slightly differed from
those of the ceramics modified with AlOOH and AlOOH/Ag nanostructures, at 4.7587 Å,
4.7562 Å and 4.7559 Å, respectively, which agrees with the values reported [54]. The value
of the coherent scattering regions (dCSR) determined by the the Williamson−Hall method
for all samples was about 80 nm. The absence of the diffraction peaks corresponding to
AlOOH was due to its low crystallinity [55] and its low content in the sample. The absence
of silver diffraction peaks was due to the low content of noble metal particles in the sample.
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Figure 7. XRD pattern of pristine α-Al2O3 ceramic (1), α-Al2O3 ceramic modified with AlOOH (2)
and AlOOH/Ag (3) nanostructures.
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Figure 8 shows the efficiency of S. aureus removal from water as a function of the
water volume passed through the macroporous ceramic samples. When passing 100 mL
of water with a bacterial concentration of 105 CFU/mL through the pristine macroporous
ceramics, the removal efficiency was 76% (Figure 8, curve 1). The modification of the
ceramics with AlOOH nanostructures led to an increase in removal efficiency of up to 89%
(Figure 8, curve 2), and when modified with AlOOH/Ag (Figure 8, curve 3) nanostructures,
the efficiency was 98%. At the same time, for the sample containing silver, the removal
efficiency after passing 50 mL of contaminated water was 100%.
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Figure 8. Efficiency of S. aureus removal from water as a function of the water volume passed
through macroporous α-Al2O3 ceramics (1), macroporous ceramics modified with AlOOH (2) and
AlOOH/Ag (3).

The results obtained indicate a significant increase in the bacterial removal (inactiva-
tion) efficiency from water by macroporous α-Al2O3 ceramic samples after modification
with AlOOH/Ag nanostructures. This increase in efficiency was caused by the presence of
Ag in the composition of the modified ceramics. Ag is known to release Ag+ ions, which
cause the inhibition of certain oxidative enzymes, protein denaturation, or interference
with DNA replication [56].

As for efficiency compared to other materials, it should be noted that this will strongly
depend on many factors, such as the initial bacterial load on the material, the flow rate, and
the area and thickness of the filter. In our work, we adsorbed (inactivated) 5 × 106 bacterial
cells per 1 cm2 of material while ensuring 100% purification efficiency. For example, it was
possible to retain about 105 bacterial cells per 1 cm2 of material on Ti3C2/Al2O3/Ag/Cu-
modified polypropylene fibers with a purification efficiency of 99.6% [57].

It should also be noted that, unlike previously obtained coatings on polymeric mi-
crofibers [42], ceramic composite filters can be regenerated by heat treatment and re-used.

4. Conclusions

Macroporous α-Al2O3 ceramics with a porosity of 75% and an average pore size of
187 microns were obtained. The impregnation of the ceramics with Al and Al/Ag nanopar-
ticle suspensions, followed by the water oxidation of the nanoparticles fixed on the ceramic
surface, resulted in the formation of nanostructured coatings which comprised boehmite
nanosheets and boehmite nanosheets doped with silver nanoparticles, respectively. Accord-
ing to the hydrogen release kinetics in the process of nanoparticle oxidation, the amount of
the boehmite nanosheets fixed in macroporous ceramics was determined as 1.1–1.5 wt.%.
It was found that, for the filtration dynamic mode of water via macroporous ceramics
modified with nanostructures, an increase in the efficiency of S. aureus removal from 76 to
98% was achieved.
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