Combined Raman Spectroscopy and Magneto-Transport Measurements in Disordered Graphene: Correlating Raman D Band and Weak Localization Features
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Raza, H. Graphene Nanoelectronics: Metrology, Synthesis, Properties and Applications; Springer Science & Business: Berlin, Germany, 2012. [Google Scholar]
- Geim, A.K.; Novoselov, K.S. The rise of graphene. Nat. Mater. 2007, 6, 183–191. [Google Scholar] [CrossRef] [PubMed]
- Saito, R.; Hofmann, M.; Dresselhaus, G.; Jorio, A.; Dresselhaus, M.S. Raman spectroscopy of graphene and carbon nanotubes. Adv. Phys. 2011, 60, 413–550. [Google Scholar] [CrossRef]
- Ferrari, A.C.; Basko, D.M. Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat. Nanotechnol. 2013, 8, 235–246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jang, J.I. New Developments in Photon and Materials Research; Nova Publishers: New York, NY, USA, 2014. [Google Scholar]
- Ferrari, A.C.; Meyer, J.C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K.S.; Roth, S.; et al. Raman Spectrum of Graphene and Graphene Layers. Phys. Rev. Lett. 2006, 97, 187401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferrari, A.C. Raman spectroscopy of graphene and graphite: Disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Commun. 2007, 143, 47–57. [Google Scholar] [CrossRef]
- Tuinstra, F.; Koenig, J.L. Raman Spectrum of Graphite. J. Chem. Phys. 1970, 53, 1126–1130. [Google Scholar] [CrossRef] [Green Version]
- Teweldebrhan, D.; Balandin, A.A. Response to ‘Comment on “Modification of graphene properties due to electron-beam irradiation”’. Appl. Phys. Lett. 2009, 95, 246102. [Google Scholar] [CrossRef] [Green Version]
- Martins Ferreira, E.H.; Moutinho, M.V.O.; Stavale, F.; Lucchese, M.M.; Capaz, R.B.; Achete, C.A.; Jorio, A. Evolution of the Raman spectra from single-, few-, and many-layer graphene with increasing disorder. Phys. Rev. B Condens. Matter Mater. Phys. 2010, 82, 125429. [Google Scholar] [CrossRef] [Green Version]
- Childres, I.; Jauregui, L.A.; Foxe, M.; Tian, J.; Jalilian, R.; Jovanovic, I.; Chen, Y.P. Effect of electron-beam irradiation on graphene field effect devices. Appl. Phys. Lett. 2010, 97, 173109. [Google Scholar] [CrossRef] [Green Version]
- Lucchese, M.M.; Stavale, F.; Ferreira, E.M.; Vilani, C.; Moutinho, M.V.D.O.; Capaz, R.B.; Achete, C.A.; Jorio, A. Quantifying ion-induced defects and Raman relaxation length in graphene. Carbon 2010, 48, 1592–1597. [Google Scholar] [CrossRef]
- Cançado, L.G.; Takai, K.; Enoki, T.; Endo, M.; Kim, Y.A.; Mizusaki, H.; Jorio, A.; Coelho, L.N.; Magalhães-Paniago, R.; Pimenta, M.A. General equation for the determination of the crystallite size La of nanographite by Raman spectroscopy. Appl. Phys. Lett. 2006, 88, 163106. [Google Scholar] [CrossRef]
- Childres, I.; Jauregui, L.A.; Tian, J.; Chen, Y.P. Effect of oxygen plasma etching on graphene studied using Raman spectroscopy and electronic transport measurements. New J. Phys. 2011, 13, 025008. [Google Scholar] [CrossRef]
- McCann, E.; Kechedzhi, K.; Fal’ko, V.I.; Suzuura, H.; Ando, T.; Altshuler, B.L. Weak-localization magnetoresistance and valley symmetry in graphene. Phys. Rev. Lett. 2006, 97, 146805. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mucciolo, E.R.; Lewenkopf, C.H. Disorder and electronic transport in graphene. J. Phys. Condens. Matter 2010, 22, 273201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tikhonenko, F.V.; Horsell, D.W.; Gorbachev, R.V.; Savchenko, A.K. Weak Localization in graphene flakes. Phys. Rev. Lett. 2008, 100, 056802. [Google Scholar] [CrossRef] [Green Version]
- Morsin, M.; Isaak, S.; Morsin, M.; Yusof, Y. Controlled defect on multilayer graphene surface by oxygen plasma. AIP Conf. Proc. 2017, 1788, 030117. [Google Scholar]
- Morsin, M.; Isaak, S.; Morsin, M.; Yusof, Y. Characterization of defect induced multilayer graphene. Int. J. Electr. Comput. Eng. 2017, 7, 1452–1458. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Singh, A.; Bayram, F.; Childress, A.S.; Rao, A.M.; Koley, G. Impact of oxygen plasma treatment on carrier transport and molecular adsorption in graphene. Nanoscale 2019, 11, 11145–11151. [Google Scholar] [CrossRef]
- Xie, G.B.; Yang, R.; Chen, P.; Zhang, J.; Tian, X.; Wu, S.; Zhao, J.; Cheng, M.; Yang, W.; Wang, D.; et al. A general route towards defect and pore engineering in graphene. Small 2014, 10, 2280–2284. [Google Scholar] [CrossRef]
- Cançado, L.G.; Jorio, A.; Ferreira, E.M.; Stavale, F.; Achete, C.A.; Capaz, R.B.; Moutinho, M.V.D.O.; Lombardo, A.; Kulmala, T.S.; Ferrari, A.C. Quantifying defects in graphene via Raman spectroscopy at different excitation energies. Nano Lett. 2011, 11, 3190–3196. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.B.; Liao, Z.M.; Wang, Y.F.; Duesberg, G.S.; Xu, J.; Fu, Q.; Wu, X.S.; Yu, D.P. Ion irradiation induced structural and electrical transition in graphene. J. Chem. Phys. 2010, 133, 234703. [Google Scholar] [CrossRef] [PubMed]
- Zhong, J.H.; Zhang, J.; Jin, X.; Liu, J.Y.; Li, Q.; Li, M.H.; Cai, W.; Wu, D.Y.; Zhan, D.; Ren, B. Quantitative correlation between defect density and heterogeneous electron transfer rate of single layer graphene. J. Am. Chem. Soc. 2014, 136, 16609–16617. [Google Scholar] [CrossRef]
- Zafar, Z.; Ni, Z.H.; Wu, X.; Shi, Z.X.; Nan, H.Y.; Bai, J.; Sun, L.T. Evolution of Raman spectra in nitrogen doped graphene. Carbon 2013, 61, 57–62. [Google Scholar] [CrossRef]
- Sun, Y.B.; Zhang, M.; Dong, L.; Wang, G.; Xie, X.; Wang, X.; Hu, T.; Di, Z. Weak localization behavior observed in graphene grown on germanium substrate. AIP Adv. 2018, 8, 045214. [Google Scholar] [CrossRef]
- Pezzini, S.; Cobaleda, C.; Diez, E.; Bellani, V. Disorder and de-coherence in graphene probed by low-temperature magneto-transport: Weak localization and weak antilocalization. J. Phys. Conf. Ser. 2013, 456, 012032. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.R.; Chen, L.; Wang, Z.; Wang, Y.; Li, T.; Wang, Y. Weak localization in few-layer graphene grown on copper foils by chemical vapor deposition. Carbon 2012, 50, 5242–5246. [Google Scholar] [CrossRef]
- Gonnelli, R.S.; Piatti, E.; Sola, A.; Tortello, M.; Dolcini, F.; Galasso, S.; Nair, J.R.; Gerbaldi, C.; Cappelluti, E.; Bruna, M.; et al. Weak localization in electric-double-layer gated few-layer graphene. 2D Mater. 2017, 4, 035006. [Google Scholar] [CrossRef]
- Zion, E.; Haran, A.; Butenko, A.V.; Wolfson, L.; Kaganovskii, Y.; Havdala, T.; Sharoni, A.; Naveh, D.; Richter, V.; Kaveh, M.; et al. Localization of charge carriers in monolayer graphene gradually disordered by ion irradiation. Graphene 2015, 4, 45–53. [Google Scholar] [CrossRef] [Green Version]
- Banhart, F.; Kotakoski, J.; Krasheninnikov, A.V. Structural defects in graphene. ACS Nano 2011, 5, 26–41. [Google Scholar] [CrossRef] [Green Version]
- Eckmann, A.; Felten, A.; Mishchenko, A.; Britnell, L.; Krupke, R.; Novoselov, K.S.; Casiraghi, C. Probing the nature of defects in graphene by Raman spectroscopy. Nano Lett. 2012, 12, 3925–3930. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Qing, M.; Wang, Y.; Chen, S. Defects in graphene: Generation, healing, and their effects on the properties of graphene: A review. J. Mater. Sci. Technol. 2015, 31, 599–606. [Google Scholar] [CrossRef]
- Gawlik, G.; Ciepielewski, P.; Baranowski, J.M. Study of implantation defects in CVD graphene by optical and electrical methods. Appl. Sci. 2019, 9, 544. [Google Scholar] [CrossRef] [Green Version]
- Vinchon, P.; Glad, X.; Robert Bigras, G.; Martel, R.; Stafford, L. Preferential self-healing at grain boundaries in plasma-treated graphene. Nat. Mater. 2021, 20, 49–54. [Google Scholar] [CrossRef]
- Baker, A.M.R.; Alexander-Webber, J.A.; Altebaeumer, T.; Janssen, T.J.B.M.; Tzalenchuk, A.; Lara-Avila, S.; Kubatkin, S.; Yakimova, R.; Lin, C.T.; Li, L.J.; et al. Weak localization scattering lengths in epitaxial, and CVD graphene. Phys. Rev. B 2012, 86, 235441. [Google Scholar] [CrossRef] [Green Version]
- Hilke, M.; Massicotte, M.; Whiteway, E.; Yu, V. Weak localization in graphene: Theory, simulations, and experiments. Sci. World J. 2014, 2014, 737296. [Google Scholar] [CrossRef]
- Drabińska, A.; Kaźmierczak, P.; Bożek, R.; Karpierz, E.; Wołoś, A.; Wysmołek, A.; Kamińska, M.; Pasternak, I.; Krajewska, A.; Strupiński, W. Electron scattering in graphene with adsorbed NaCl nanoparticles. J. Appl. Phys. 2015, 117, 014308. [Google Scholar] [CrossRef]
- Ilić, S.; Meyer, J.S.; Houzet, M. Weak localization in transition metal dichalcogenide monolayers and their heterostructures with graphene. Phys. Rev. B 2019, 99, 205407. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Wang, H.; Chen, L.; He, L.; Chen, C.; Jiang, C.; Qiu, Z.; Wang, H.; Xie, X. Weak localization in graphene sandwiched by aligned h-BN flakes. Nanotechnology 2020, 31, 215712. [Google Scholar] [CrossRef]
- Abbas, M.S.; Srivastava, P.K.; Hassan, Y.; Lee, C. Asymmetric carrier transport and weak localization in few layer graphene grown directly on a dielectric substrate. Phys. Chem. Chem. Phys. 2021, 23, 25284–25290. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Safron, N.S.; Han, E.; Arnold, M.S.; Gopalan, P. Electronic transport and Raman scattering in size-controlled nanoperforated graphene. ACS Nano 2012, 6, 9846–9854. [Google Scholar] [CrossRef]
- Oberhuber, F.; Blien, S.; Heydrich, S.; Yaghobian, F.; Korn, T.; Schüller, C.; Strunk, C.; Weiss, D.; Eroms, J. Weak localization and Raman study of anisotropically etched graphene antidots. Appl. Phys. Lett. 2013, 103, 143111. [Google Scholar] [CrossRef] [Green Version]
- Wang, P.H.; Shih, F.Y.; Chen, S.Y.; Hernandez, A.B.; Ho, P.H.; Chang, L.Y.; Chen, C.H.; Chiu, H.C.; Chen, C.W.; Wang, W.H. Demonstration of distinct semiconducting transport characteristics of monolayer graphene functionalized via plasma activation of substrate surfaces. Carbon 2015, 93, 353–360. [Google Scholar] [CrossRef] [Green Version]
- Kierdaszuk, J.; Kaźmierczak, P.; Drabińska, A.; Korona, K.; Wołoś, A.; Kamińska, M.; Wysmołek, A.; Pasternak, I.; Krajewska, A.; Pakuła, K. Enhanced Raman scattering and weak localization in graphene deposited on GaN nanowires. Phys. Rev. B. 2015, 92, 195403. [Google Scholar] [CrossRef] [Green Version]
- Coleman, C.; McIntosh, R.; Bhattacharyya, S. Controlling the activation energy of graphene-like thin films through disorder induced localization. J. Appl. Phys. 2013, 114, 043716. [Google Scholar] [CrossRef]
- Fujimoto, A.; Perini, C.J.; Terasawa, D.; Fukuda, A.; Harada, Y.; Sasa, S.; Yano, M.; Vogel, E.M. Disorder and weak localization near charge neutral point in Ti-cleaned single-layer graphene. Phys. Status Solidi B 2019, 256, 1800541. [Google Scholar] [CrossRef]
- Blake, P.; Hill, E.W.; Castro Neto, A.H.; Novoselov, K.S.; Jiang, D.; Yang, R.; Booth, T.J.; Geim, A.K. Making graphene visible. Appl. Phys. Lett. 2007, 91, 063124. [Google Scholar] [CrossRef] [Green Version]
- Tao, L.; Qiu, C.; Yu, F.; Yang, H.; Chen, M.; Wang, G.; Sun, L. Modification on single-layer graphene induced by low-energy electron-beam irradiation. J. Phys. Chem. C 2013, 117, 10079–10085. [Google Scholar] [CrossRef]
- Teweldebrhan, D.B. 2D Dirac Materials: From Graphene to Topological Insulators. Ph.D. Thesis, UC Riverside, Riverside, CA, USA, 2011. [Google Scholar]
- Kim, D.C.; Jeon, D.Y.; Chung, H.J.; Woo, Y.; Shin, J.K.; Seo, S. The structural and electrical evolution of graphene by oxygen plasma-induced disorder. Nanotechnology 2009, 20, 375703. [Google Scholar] [CrossRef]
- Tan, Y.W.; Zhang, Y.; Bolotin, K.; Zhao, Y.; Adam, S.; Hwang, E.H.; Sarma, S.D.; Stormer, H.L.; Kim, P. Measurement of scattering rate and minimum conductivity in graphene. Phys. Rev. Lett. 2007, 99, 246803. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Childres, I.; Jauregui, L.A.; Park, W.; Cao, H.; Chen, Y.P. Raman spectroscopy of graphene and related materials. In New Developments in Photon in and Materials Research; Nova Science Publishers: New York, NY, USA, 2013; Chapter 19; pp. 1–20. [Google Scholar]
- Qin, Y.; Han, J.; Guo, G.; Du, Y.; Li, Z.; Song, Y.; Pi, L.; Wang, X.; Wan, X.; Han, M.; et al. Enhanced quantum coherence in graphene caused by Pd cluster deposition. Appl. Phys. Lett. 2015, 106, 023108. [Google Scholar] [CrossRef] [Green Version]
- Kim, N.-H.; Shin, Y.S.; Park, S.; Kim, H.S.; Lee, J.S.; Ahn, C.W.; Lee, J.O.; Doh, Y.J. Quantum interference effects in chemical vapor deposited graphene. Curr. Appl. Phys. 2016, 16, 31–36. [Google Scholar] [CrossRef] [Green Version]
- Yu, C.; Li, J.; Gao, K.; Lin, T.; Liu, Q.; Dun, S.; He, Z.; Cai, S.; Feng, Z. Observation of quantum hall effect and weak localization in p-type bilayer epitaxial graphene on SiC(0001). Solid State Commun. 2013, 175-176, 119–122. [Google Scholar] [CrossRef]
- Rodrigues, J.N.B. Intervalley scattering of graphene massless Dirac fermions at 3-periodic grain boundaries. Phys. Rev. B 2016, 94, 134201. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Childres, I.; Qi, Y.; Sadi, M.A.; Ribeiro, J.F.; Cao, H.; Chen, Y.P. Combined Raman Spectroscopy and Magneto-Transport Measurements in Disordered Graphene: Correlating Raman D Band and Weak Localization Features. Coatings 2022, 12, 1137. https://doi.org/10.3390/coatings12081137
Childres I, Qi Y, Sadi MA, Ribeiro JF, Cao H, Chen YP. Combined Raman Spectroscopy and Magneto-Transport Measurements in Disordered Graphene: Correlating Raman D Band and Weak Localization Features. Coatings. 2022; 12(8):1137. https://doi.org/10.3390/coatings12081137
Chicago/Turabian StyleChildres, Isaac, Yaping Qi, Mohammad A. Sadi, John F. Ribeiro, Helin Cao, and Yong P. Chen. 2022. "Combined Raman Spectroscopy and Magneto-Transport Measurements in Disordered Graphene: Correlating Raman D Band and Weak Localization Features" Coatings 12, no. 8: 1137. https://doi.org/10.3390/coatings12081137
APA StyleChildres, I., Qi, Y., Sadi, M. A., Ribeiro, J. F., Cao, H., & Chen, Y. P. (2022). Combined Raman Spectroscopy and Magneto-Transport Measurements in Disordered Graphene: Correlating Raman D Band and Weak Localization Features. Coatings, 12(8), 1137. https://doi.org/10.3390/coatings12081137