
Citation: Childres, I.; Qi, Y.; Sadi,

M.A.; Ribeiro, J.F.; Cao, H.; Chen, Y.P.

Combined Raman Spectroscopy and

Magneto-Transport Measurements in

Disordered Graphene: Correlating

Raman D Band and Weak

Localization Features. Coatings 2022,

12, 1137. https://doi.org/10.3390/

coatings12081137

Academic Editor: Alicia de Andrés

Received: 21 May 2022

Accepted: 4 August 2022

Published: 7 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

coatings

Article

Combined Raman Spectroscopy and Magneto-Transport
Measurements in Disordered Graphene: Correlating Raman D
Band and Weak Localization Features
Isaac Childres 1,2,†, Yaping Qi 3,4,*,†, Mohammad A. Sadi 2,5, John F. Ribeiro 2,5, Helin Cao 1,2

and Yong P. Chen 1,2,3,4,5,6,*

1 Department of Physics and Astronomy, Purdue University, West Lafayette, IN 47907, USA
2 Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, USA
3 Macau Institute of Systems Engineering, Macau University of Science and Technology, Av. Wai Long,

Macao SAR, China
4 Purdue Quantum Science and Engineering Institute, Purdue University, West Lafayette, IN 47907, USA
5 School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907, USA
6 Institute for Physics and Astronomy and Villum Centers for Dirac Materials and for Hybrid Quantum

Materials and Devices, Aarhus University, 8000 Aarhus C, Denmark
* Correspondence: ypqi@must.edu.mo (Y.Q.); yongchen@purdue.edu (Y.P.C.); Tel.: +1-(765)-494-0947 (Y.P.C.)
† These authors contributed equally to this work.

Abstract: Although previous studies have reported the Raman and weak localization properties
of graphene separately, very few studies have examined the correlation between the Raman and
weak localization characterizations of graphene. Here, we report a Raman spectroscopy and low-
magnetic-field electronic transport study of graphene devices with a controlled amount of defects
introduced into the graphene by exposure to electron-beam irradiation and oxygen plasma etching.
The relationship between the defect correlation length (LD), calculated from the Raman “D” peak,
and the characteristic scattering lengths, Lφ, Li and L*, computed from the weak localization effects
measured in magneto-transport was investigated. Furthermore, the effect on the mean free path
length due to the increasing amounts of irradiation incident on the graphene device was examined.
Both parameters—including LD and Lφ—decreased with the increase of irradiation, which was shown
to be related to the increase of disorder through the concomitant decrease in the mean free path
length, l. Although these are similar trends that have been observed separately in previous reports,
this work revealed a novel nonlinear relationship between LD and Lφ, particularly at lower levels of
disorder. These findings are valuable for understanding the correlation between disorder in graphene
and the phase coherence and scattering lengths of its charge carriers.

Keywords: Raman spectroscopy; weak localization; disorder; graphene

1. Introduction

Graphene has received much attention in the scientific community because of its dis-
tinct properties and potential in nanoelectronics applications [1,2]. Raman spectroscopy [3–5],
which identifies vibrational modes using laser excitation, is a powerful, non-invasive
method to measure many important characteristics of graphene [6], such as its layer num-
ber, defect density, and carrier concentration.

In pristine graphene, the Stokes phonon energy shift of laser excitation creates two
main peaks in the Raman spectrum. The G peak (~1580 cm−1) is the primary in-plane
vibrational mode, and is caused by the E2g phonon at the Γ point. Another major peak in
graphene is 2D (~2700 cm−1), which is believed to be created by a process of the double
scattering of A1g phonons between K and K’ with an electron–hole pair [4].

In disordered graphene, a third major Raman peak appears: the D peak (~1350 cm−1).
In order for the D peak to be present in the Raman spectrum, a charge carrier must be
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excited and inelastically scattered by a phonon, and then elastically scattered by a lattice
defect or grain boundary to recombine [7]. Disorder in graphene not only activates the
D peak, which is caused by scattering from K to K’ (intervalley), but also gives rise to
the D’ peak (~1620 cm−1), which is formed by scattering from K to K (intravalley), and
D + D’ (~2940 cm−1), a combinational scattering peak [7]. As has been previously reported,
due to the strong dependence of graphene’s Raman D peak on disorder in graphene,
the level of disorder in graphene can be characterized using the ratio of Raman peak
intensities (ID/IG) [8–14]. As the disorder in graphene increases, ID/IG displays two
different behaviors: a regime of “low defect density”, where ID/IG will increase with the
enhanced disorder because a higher defect density creates more elastic scattering, and a
regime of “high defect density”, where ID/IG will decrease with the increased disorder
because a higher defect density results in a more amorphous carbon structure, attenuating
all of the Raman peaks [7].

Disorder in graphene can also be characterized using electrical transport through
the phenomenon of weak localization. Weak localization appears in disordered graphene
samples as a peak in the resistivity, as a function of a magnetic field at zero magnetic
field. At zero field, graphene’s resistivity is increased by constructive interference between
the time-reversed trajectories of phase-coherent carriers scattered off of defects [15]. A
perpendicular magnetic field breaks the time-reversal symmetry, decreasing the resistivity
as the field increases. The width of this weak localization feature is directly related to
the phase coherence length, Lφ, the length through which coherent charge carriers travel
before losing phase coherence. This low-field curve can be used to extract Lφ, as well as the
intervalley and intravalley scattering lengths, Li and L*, respectively. Intravalley scattering
is believed to be largely due to charge impurity disorder, while intervalley scattering is
caused by sharp lattice defects.

Although previous reports have investigated these phenomena in disordered graphene
separately [8–41], there are very few studies that examined the correlation between the
Raman and weak localization characterizations of graphene [42–47]. Herein, the relationship
between the Raman and weak localization properties of graphene as controlled amounts of
disorder are introduced was investigated. This study provides important information for a
better understanding of the relationship between defect correlation length (reflecting disorder
density) in graphene and the phase coherence and scattering lengths of its charge carriers.

2. Materials and Methods

Our graphene samples were fabricated using a similar method to that described in our
previous publications [13,14]. We performed the micromechanical exfoliation [2] of highly
ordered pyrolytic graphite (HOPG, “ZYA” grade, from Momentive Performance Materials)
onto a p-doped Si wafer with a 300 nm of overlayer SiO2. Single-layer graphene flakes,
typically of around 100 µm2 in size, were identified using color contrast with an optical
microscope [14,48] and then confirmed with Raman spectroscopy [7]. Graphene field-effect
transistor (GFET) devices were then fabricated using electron-beam lithography (EBL). The
electrical contacts (5 nm Cr/35 nm Au) were fabricated by electron-beam evaporation.

In order to study the effects of disorder, a GFET device was placed in the same
scanning electron microscope (SEM) system used for EBL under high vacuum (10−6 torr)
to undergo electron-beam irradiation [13], which is a common method to introduce defects
in graphene [9,49,50]. An area of 25 µm by 25 µm including the graphene flake on the
device was continuously scanned by the electron beam. The beam’s kinetic energy was
30 keV, and the beam current was kept at 0.133 nA. The accumulated time exposed to the
electron-beam (Te) determines the accumulated irradiation dosage (Re) (e.g., Te = 75 s gives
Re = 100 e−/nm2). In comparison, the typical exposure used in our lithography process is
around 1 e−/nm2. SEM imaging typically exposes samples to at least 100 e−/nm2.

After each successive exposure, the graphene device was removed from the SEM,
and room-temperature Raman measurements were promptly performed using a 532-nm
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excitation laser. The device was then placed in a probe station and cooled to 4 K at
10−6 mbar for the Hall electrical transport measurements.

In addition, we conducted measurements of graphene exposed to various amounts
of oxygen plasma [14], as another method to create defects. Our graphene devices were
exposed cumulatively to short pulses (~ 1

2 s) of oxygen plasma in a microwave plasma
system (Plasma-Preen II-382) operating at 100 W. A constant flow of O2 (3 sccm) was
pumped through the sample space in a rough vacuum (540 Torr), and the gas was excited
by microwaves (manually pulsed on and off), generating an ionized oxygen plasma, which
has an etching effect on graphene and thus creates defects, which can be observed with
AFM in high enough concentrations [14,51]. The microwave-excited plasma pulses were
applied to the samples cumulatively, and field-effect and Raman measurements were
performed as soon as possible (<5 min) in the ambient atmosphere and temperature after
each pulse, in order to avoid any relaxation effects. The magneto-transport data were taken
using a 3He superconducting magnet probe several days after the plasma exposure.

From the Raman spectroscopy measurements, we extracted the defect correlation
length, LD, using

ID
IG

=
C′(λ)
LD2 (1)

for the low defect regime and
ID
IG

= D(λ)·LD
2 (2)

for the high defect regime. Both formulae were based on a point defect approximation of
the Lucchese model [12], where C’(λ) = 117 nm2 for our λ = 532 nm laser, and D(λ) was
determined by imposing continuity at the border between the two regimes.

We tuned the carrier density of our GFET device and calculated the effect on the mean
free path length. The scattering time can be calculated approximately from the conductivity (σ) by

τ =
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σ

e2νF

√
π

n
(3)

which can then be transformed into the equation for the mean free path length [52].

l =

Coatings 2022, 12, x FOR PEER REVIEW 3 of 10 
 

 

After each successive exposure, the graphene device was removed from the SEM, 
and room-temperature Raman measurements were promptly performed using a 532-nm 
excitation laser. The device was then placed in a probe station and cooled to 4 K at 10−6 
mbar for the Hall electrical transport measurements. 

In addition, we conducted measurements of graphene exposed to various amounts 
of oxygen plasma [14], as another method to create defects. Our graphene devices were 
exposed cumulatively to short pulses (~½ s) of oxygen plasma in a microwave plasma 
system (Plasma-Preen II-382) operating at 100 W. A constant flow of O2 (3 sccm) was 
pumped through the sample space in a rough vacuum (540 Torr), and the gas was excited 
by microwaves (manually pulsed on and off), generating an ionized oxygen plasma, 
which has an etching effect on graphene and thus creates defects, which can be observed 
with AFM in high enough concentrations [14,51]. The microwave-excited plasma pulses 
were applied to the samples cumulatively, and field-effect and Raman measurements 
were performed as soon as possible (<5 min) in the ambient atmosphere and temperature 
after each pulse, in order to avoid any relaxation effects. The magneto-transport data were 
taken using a 3He superconducting magnet probe several days after the plasma exposure. 

From the Raman spectroscopy measurements, we extracted the defect correlation 
length, LD, using 𝐼𝐷𝐼𝐺  =  𝐶′(𝜆)𝐿𝐷2  (1)

for the low defect regime and 𝐼𝐷𝐼𝐺  =  𝐷(𝜆) ∙ 𝐿𝐷2 (2)

for the high defect regime. Both formulae were based on a point defect approximation of 
the Lucchese model [12], where C’(λ) = 117 nm2 for our λ = 532 nm laser, and D(λ) was 
determined by imposing continuity at the border between the two regimes. 

We tuned the carrier density of our GFET device and calculated the effect on the 
mean free path length. The scattering time can be calculated approximately from the con-
ductivity (σ) by 𝜏 =  ħ𝜎𝑒2𝜈𝐹 ට𝜋𝑛 (3)

which can then be transformed into the equation for the mean free path length [52]. 𝑙 =  ħ𝜎𝑒ଶ ට𝜋𝑛 (4)

where n is the carrier (doping) density and 𝑙 = 𝜈ி𝜏, given the Fermi velocity of 𝜈ி  ≈ 10𝑚/𝑠  [2]. Here, we noted that the mean free path length is strongly related to the dop-
ing density, which for our measurements was tuned on the order of 1 × 1015 m−2 to 20 × 1015 
m−2 through back-gate tuning. 

We can also extract Lϕ, Li and L* (phase coherence, intervalley and intravalley scatter-
ing lengths, respectively) from low-field magneto-transport measurements by first con-
verting resistance to a change in conductivity [14], ∆𝜎௫௫(𝐵) = [𝜎௫௫(𝐵) − 𝜎௫௫(𝐵 = 0)] − [𝜎௫௫(𝐵, 𝑇) − 𝜎௫௫(𝐵 = 0, 𝑇)] (5)

with 𝜎௫௫(𝐵) = ଵ௪ ∙ ଵோೣೣ() 
In this equation, σ(B, Th) represents the magneto-conductivity at a sufficiently high 

temperature for the weak localization feature to disappear; Th is ~60 K as we previously 
reported [14]. Rxx means the two-terminal resistance of the device. The length and width 

σ

e2

√
π

n
(4)

where n is the carrier (doping) density and l = νFτ, given the Fermi velocity of νF ≈ 106 m/s [2].
Here, we noted that the mean free path length is strongly related to the doping density,
which for our measurements was tuned on the order of 1 × 1015 m−2 to 20 × 1015 m−2

through back-gate tuning.
We can also extract Lφ, Li and L* (phase coherence, intervalley and intravalley scat-

tering lengths, respectively) from low-field magneto-transport measurements by first
converting resistance to a change in conductivity [14],

∆σxx(B) = [σxx(B)− σxx(B = 0)]− [σxx(B, Th)− σxx(B = 0, Th)] (5)

with σxx(B) = 1
w ·

1
Rxx(B) .

In this equation, σ(B, Th) represents the magneto-conductivity at a sufficiently high
temperature for the weak localization feature to disappear; Th is ~60 K as we previously
reported [14]. Rxx means the two-terminal resistance of the device. The length and width
of our graphene sample are represented by l and w respectively. We then fitted this ∆σ to a
weak localization theory developed for graphene [15–17]:

∆σxx(B) = e2

πh ·
[

F
(

B
Bϕ

)
− F

(
B

Bϕ+2Bi

)
− 2F

(
B

Bϕ+Bi+B∗

)]
with F(z) = ln(z) + Ψ

(
1
2 + 1

z

)
and Bϕ,i,∗ =

(
h

8πe

)
L−2

ϕ,i,∗
(6)

where Ψ is the digamma function.
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3. Results

We characterize the disorder induced by the electron-beam exposure in Figure 1. First,
we performed Raman measurements for an array of graphene samples with different levels
of induced disorder by applying irradiation. Figure 1a shows that the D peak intensity
increased with the increasing dosage of irradiation, indicating the increasing disorder of
the graphene. The ID/IG ratio increased from 0.3 at 50 e−/nm2 to 4 at 10,000 e−/nm2 then
decreased to 3.7 at 30,000 e−/nm2, indicating a transition into the high-disorder regime.
Figure 1b plots the measured resistance for a range of low magnetic fields, where we
observed a transition from positive to negative magnetoresistance with the increase of
irradiation, with weak localization features appearing at zero fields.
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Figure 1. Disorder induced by electron-beam exposure. (a) The Raman spectra (excitation wavelength
532 nm) of graphene for a progression of accumulated electron-beam exposures mostly show (except
for the last and highest dosage in the high-disorder regime) an increase in the disorder-induced ‘D’
peak with increased radiation exposure. The spectra are offset vertically for clarity. (b) Magnetic
field-dependent resistance yields symmetric line shapes that notably develop a central resistance
peak associated with weak localization. (c) The change in conductivity versus the magnetic field for
the same progression of accumulated electron-beam exposures which are denoted by their ID/IG

ratio derived from part (a). (d) A comparison that shows the decrease of the scattering length for
low-to-high disorder samples, as indicated by the mostly increasing ID/IG ratio. The scattering
lengths are derived from the conductivity curves in (c) using weak localization theory.
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This weak localization feature can be seen more clearly in Figure 1c, which shows
∆σxx versus the magnetic field. The black dotted line in Figure 1c is a representative fitting
curve (for the dataset at ID/IG = 0.3) using Equation (6) to extract Lφ, Li and L* from the
weak localization model. We performed such fitting for all of the relevant datasets, and
the extracted quantities could then be compared to the ID/IG ratio from the corresponding
Raman measurement. We noted a general trend in Figure 1d of decreasing scattering
lengths with an increasing amount of disorder, as indicated by the higher ID/IG (up to the
high-disorder regime). The value of L* at the highest disorder (ID/IG = 3.7) is larger than
the previous value at ID/IG = 4, which deviates from the above expectation; the reason is
not clear.

In order to add more insights into the observed decrease in scattering length with the
increase of irradiation exposure, we also calculated the mean free path, l, for a number
of electron-beam exposures using Equation (4) listed above (Figure 2). We found that the
trends observed in Figure 1c—decreasing scattering lengths with increasing irradiation
dosage—were generally consistent with a trend in l, which decreased with increasing
levels of irradiation exposure, from ~95 nm at 500 e−/nm2 (shown in orange) to ~5 nm at
30,000 e−/nm2 (shown in turquoise) for the lowest tuned doping density, 1 × 1015 m−2.
There was an anomalous increase in l between 50 e−/nm2 and 500 e−/nm2. This may
indicate that low-dosage e-beam irradiation could have a possible effect of reducing or re-
moving some of the disorder affecting electronic transport (mean free path l). Furthermore,
at relatively low doping, we observed a decrease of the mean free path length, l, when the
doping was tuned to higher values.
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Figure 2. Carrier density dependence of the mean free path. The mean free path, l, versus the carrier
density, n, for various levels of e-beam irradiation dosage. When the exposure increases, l tends to
decrease because of higher disorder. For each exposure, l increases as the doping density is tuned to
the lowest values close to the Dirac point. There is an anomalous increase in l between 50 e−/nm2

and 500 e−/nm2.

We then used another method to increase disorder in graphene through plasma-
etching; we confirm the disorder-induced trends in Figures 1 and 2. An array of plasma-
etched samples with different levels of disorder determined by Raman spectroscopy under-
went low-field magneto-transport measurements. Figure 3a show ∆σxx versus the magnetic
field for this array of samples identified by their ID/IG ratio. The weak localization feature
became broader for higher levels of disorder, indicating smaller values of Lφ. Figure 3b
shows a progression of Lφ, Li and L* with increasing levels of disorder. Although there were
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relatively large uncertainties and error bars in our L* calculation, Lφ and Li both decreased
significantly with the increase of disorder demonstrated by the change of ID/IG.
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Figure 3. Disorder induced by oxygen plasma. (a) Change in conductivity versus the magnetic field
for various devices exposed to differing amounts of oxygen plasma. The curves are identified by
each device’s corresponding ID/IG ratio from their Raman spectra. (b) A comparison of the weak
localization scattering lengths derived from each conductivity curve for the differing ID/IG ratios.

4. Discussion

We have ascertained that increasing disorder, either induced by oxygen plasma etching
or electron beam irradiation, decreased the defect length (LD, reflecting the length scale or
domain size between defects). This was observed through the progressive growth of the
D peak with increasing levels of exposure, characteristic of continuously increased levels
of disorder, where we evolve from a low-defect-density regime defined by an increasing
ID/IG ratio into a high-defect-density regime defined by a decreasing ID/IG ratio. When
compared to an estimation of the defect length (LD) derived from the amount of irradiation,
the data from the electron-beam exposure could show a somewhat different LD dependence
of ID/IG from that for the data from the plasma exposure [14,53]. This indicated that
different types of defects could be generated through different processes [12].

This conclusion can be examined further by noting that there was an increased amount
of attenuation in the G and 2D peaks at high levels of disorder, which was observed to be
much shorter and wider for the oxygen plasma case. The 2D peak became to be almost
completely suppressed by higher oxygen plasma exposure, while the 2D peak remained the
largest feature with high electron-beam exposures. This indicates that the ID/IG progression
might be caused by two separate types of defects for each case.

The magneto-transport measurements for each case showed a weak localization feature
that became broader when the levels of disorder in the graphene were higher, indicating
decreasing phase coherence lengths with the increase of disorder. We also observed a
correlation between the decrease in LD with increasing disorder and the decrease in the
characteristic scattering lengths with an increasing disorder caused by both electron-beam
irradiation and oxygen plasma etching.

There was an overall trend of LD and Lφ decreasing with the increase of disorder,
which was observed separately in previous reports [54–56]. In Figure 4, we plot the Lφ,
Li and L* derived from Equation (6) versus an LD calculated from the ID/IG ratio of the
Raman spectrum using Equation (1) (the low-defect-density regime) and Equation (2) (the
high-defect-density regime). We saw some linearity in the data, particularly for the plasma-
etched samples and at higher disorders levels, estimating an Lφ around 15 times larger than
LD and an Li about five times larger than LD. However, at lower levels of disorder, there was
a nonlinear relationship between LD and Lφ. This may be due to how LD here characterizes
relatively isolated and dilute defects created by irradiation and not 1D-like line defects
separating crystallites, which could impact intravalley and intervalley scattering more.
For example, the change in LD could reflect the more-changing number and distribution
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of point defects, and not so much the introduction of periodic line defects which majorly
impacted scattering in [57].
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We have demonstrated, in this study, how Raman spectra and magneto-transport are
affected by disorder and carrier density. It is worth investigating further the discrepancies
between our electron-beam and oxygen plasma data in order to better determine the
nature of the defects in each case, and to determine why the shape of the high-disorder
spectra look different in each case, specifically the shapes of the G and 2D peaks. More
research is also needed in order to figure out how the Raman spectra of graphene—and
specifically the disorder D peak—are affected by other parameters such as temperature or
strain. In summary, the findings in this study are valuable for a better understanding of
the relationship between the disorder density of graphene and transport parameters like
phase coherence and scattering lengths. Furthermore, our analysis of the disorder caused
by oxygen plasma and electron-beam irradiation enhances our knowledge of charge carrier
behavior within the context of weak localization.
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