Thin Films Characterization and Study of N749-Black Dye for Photovoltaic Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material and Device Preparation
2.2. Device and Thin Films Characterization
3. Results
3.1. N749-BD Thin Films Characteristics
3.2. Current-Voltage (I–V) Characteristics
3.2.1. I–V Characteristics in Dark
3.2.2. Photovoltaic I–V Characteristics
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Menke, S.M.; Ran, N.A.; Bazan, G.C.; Friend, R.H. Understanding energy loss in organic solar cells: Toward a new efficiency regime. Joule 2018, 2, 25–35. [Google Scholar] [CrossRef]
- Carella, A.; Borbone, F.; Centore, R. Research progress on photosensitizers for DSSC. Front. Chem. 2018, 6, 481. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Hao, S.; Lan, Z.; Lin, J.; Huang, M.; Huang, Y.; Fang, L.; Yin, S.; Sato, T. A thermoplastic gel electrolyte for stable quasi-solid-state dye-sensitized solar cells. Adv. Funct. Mater. 2007, 17, 2645–2652. [Google Scholar] [CrossRef]
- Green, M.A.; Ho-Baillie, A. Perovskite solar cells: The birth of a new era in photovoltaics. ACS Energy Lett. 2017, 2, 822–830. [Google Scholar] [CrossRef]
- Tumbul, A.; Aslan, F.; Göktaş, A.; Mutlu, I. All solution processed superstrate type Cu2ZnSnS4 (CZTS) thin film solar cell: Effect of absorber layer thickness. J. Alloy. Compd. 2019, 781, 280–288. [Google Scholar] [CrossRef]
- Zhang, W.; Jin, W.; Fukushima, T.; Saeki, A.; Seki, S.; Aida, T. Supramolecular linear heterojunction composed of graphite-like semiconducting nanotubular segments. Science 2011, 334, 340–343. [Google Scholar] [CrossRef] [PubMed]
- Tahir, M.; Khan, D.N.; Gul, S.; Wahab, F.; Said, S.M. Photovoltaic effect on the microelectronic properties of perylene/p-Si heterojunction devices. J. Mater. Sci. Mater. Electron. 2019, 30, 19463–19470. [Google Scholar] [CrossRef]
- Aslan, F.; Arslan, F.; Tumbul, A.; Goktas, A. Synthesis and characterization of solution processed p-SnS and n-SnS2 thin films: Effect of starting chemicals. Opt. Mater. 2022, 127, 112270. [Google Scholar] [CrossRef]
- Houili, H.; Tutiš, E.; Batistić, I.; Zuppiroli, L. Investigation of the charge transport through disordered organic molecular heterojunctions. J. Appl. Phys. 2006, 100, 033702. [Google Scholar] [CrossRef]
- Zeb, M.; Tahir, M.; Muhammad, F.; Mohd Said, S.; Mohd Sabri, M.F.; Sarker, M.R.; Hamid Md Ali, S.; Wahab, F. Amplified spontaneous emission and optical gain in organic single crystal quinquethiophene. Crystals 2019, 9, 609. [Google Scholar] [CrossRef]
- Mishra, A.; Fischer, M.K.; Bäuerle, P. Metal-free organic dyes for dye-sensitized solar cells: From structure: Property relationships to design rules. Angew. Chem. Int. Ed. 2009, 48, 2474–2499. [Google Scholar] [CrossRef] [PubMed]
- Aghazada, S.; Nazeeruddin, M.K. Ruthenium complexes as sensitizers in dye-sensitized solar cells. Inorganics 2018, 6, 52. [Google Scholar] [CrossRef]
- Deng, K.; Cole, J.M.; Rawle, J.L.; Nicklin, C.; Chen, H.; Yanguas-Gil, A.; Elam, J.W.; Stenning, G.B. Dye nanoaggregate structures in MK-2, N3, and N749 dye center dot center dot center dot TiO2 interfaces that represent dye-sensitized solar cell working electrodes. Acs Appl. Energy Mater. 2020, 3, 900–914. [Google Scholar] [CrossRef]
- Lim, J.; Lee, M.; Balasingam, S.K.; Kim, J.; Kim, D.; Jun, Y. Fabrication of panchromatic dye-sensitized solar cells using pre-dye coated TiO 2 nanoparticles by a simple dip coating technique. RSC Adv. 2013, 3, 4801–4805. [Google Scholar] [CrossRef]
- Alekseev, P.; Sharov, V.; Borodin, B.; Dunaevskiy, M.; Reznik, R.; Cirlin, G. Effect of the lattice mismatch on the efficiency of the GaAs nanowire/Si substrate solar cell. J. Phys. Conf. Ser. 2015, 2015, 012004. [Google Scholar] [CrossRef]
- Hagfeldt, A.; Boschloo, G.; Sun, L.; Kloo, L.; Pettersson, H. Dye-sensitized solar cells. Chem. Rev. 2010, 110, 6595–6663. [Google Scholar] [CrossRef]
- Lee, K.; Park, S.W.; Ko, M.J.; Kim, K.; Park, N.-G. Selective positioning of organic dyes in a mesoporous inorganic oxide film. Nat. Mater. 2009, 8, 665–671. [Google Scholar] [CrossRef]
- Musyaro′ah; Huda, I.; Indayani, W.; Gunawan, B.; Yudhoyono, G.; Endarko. Fabrication and characterization dye sensitized solar cell (DSSC) based on TiO2/SnO2 composite. AIP Conf. Proc. 2017, 1788, 030062. [Google Scholar]
- Chang, S.; Wong, K.Y.; Xiao, X.; Chen, T. Effective improvement of the photovoltaic performance of black dye sensitized quasi-solid-state solar cells. RSC Adv. 2014, 4, 31759–31763. [Google Scholar] [CrossRef]
- Han, L.; Islam, A.; Chen, H.; Malapaka, C.; Chiranjeevi, B.; Zhang, S.; Yang, X.; Yanagida, M. High-efficiency dye-sensitized solar cell with a novel co-adsorbent. Energy Environ. Sci. 2012, 5, 6057–6060. [Google Scholar] [CrossRef]
- Nazeeruddin, M.K.; Pechy, P.; Renouard, T.; Zakeeruddin, S.M.; Humphry-Baker, R.; Comte, P.; Liska, P.; Cevey, L.; Costa, E.; Shklover, V. Engineering of efficient panchromatic sensitizers for nanocrystalline TiO2-based solar cells. J. Am. Chem. Soc. 2001, 123, 1613–1624. [Google Scholar] [CrossRef]
- Uddin, S.I.; Tahir, M.; Aziz, F.; Sarker, M.R.; Muhammad, F.; Nawaz Khan, D.; Hamid Md Ali, S. Thickness optimization and photovoltaic properties of bulk heterojunction solar cells based on PFB–PCBM layer. Energies 2020, 13, 5915. [Google Scholar] [CrossRef]
- Goktas, A.; Tumbul, A.; Aba, Z.; Kilic, A.; Aslan, F. Enhancing crystalline/optical quality, and photoluminescence properties of the Na and Sn substituted ZnS thin films for optoelectronic and solar cell applications; a comparative study. Opt. Mater. 2020, 107, 110073. [Google Scholar] [CrossRef]
- Mikailzade, F.; Önal, F.; Maksutoglu, M.; Zarbali, M.; Göktaş, A. Structure and magnetization of polycrystalline La0.66Ca0.33MnO3 and La0.66Ba0.33MnO3 films prepared using sol-gel technique. J. Supercond. Nov. Magn. 2018, 31, 4141–4145. [Google Scholar] [CrossRef]
- Abdullah, K.A.; Bakour, B. Influence of depletion region width on performance of solar cell under sunlight concentration. Energy Procedia 2011, 6, 36–45. [Google Scholar] [CrossRef]
- Ahmed, H.; Doran, J.; McCormack, S. Increased short-circuit current density and external quantum efficiency of silicon and dye sensitised solar cells through plasmonic luminescent down-shifting layers. Sol. Energy 2016, 126, 146–155. [Google Scholar] [CrossRef]
- Marques Lameirinhas, R.A.; Torres, J.P.N.; de Melo Cunha, J.P. A Photovoltaic Technology Review: History, Fundamentals and Applications. Energies 2022, 15, 1823. [Google Scholar] [CrossRef]
- Suresh, B.V. Solid State Devices and Technology; Pearson Education: Chennai, India, 2010. [Google Scholar]
- Koyyada, G.; Kumar Chitumalla, R.; Thogiti, S.; Kim, J.H.; Jang, J.; Chandrasekharam, M.; Jung, J.H. A new series of EDOT based co-sensitizers for enhanced efficiency of cocktail DSSC: A comparative study of two different anchoring groups. Molecules 2019, 24, 3554. [Google Scholar] [CrossRef]
- Nazeeruddin, M.K.; Pechy, P.; Grätzel, M. Efficient panchromatic sensitization of nanocrystallineTiO2 films by a black dye based on atrithiocyanato–ruthenium complex. Chem. Commun. 1997, 18, 1705–1706. [Google Scholar] [CrossRef]
- Muhammad, F.; Tahir, M.; Zeb, M.; Kalasad, M.N.; Mohd Said, S.; Sarker, M.R.; Sabri, M.F.M.; Ali, S.H.M. Synergistic enhancement in the microelectronic properties of poly-(dioctylfluorene) based Schottky devices by CdSe quantum dots. Sci. Rep. 2020, 10, 1–13. [Google Scholar] [CrossRef]
- Younas, M.; Harrabi, K. Performance enhancement of dye-sensitized solar cells via co-sensitization of ruthenium (II) based N749 dye and organic sensitizer RK1. Sol. Energy 2020, 203, 260–266. [Google Scholar] [CrossRef]
- Tahir, M.; Ilyas, M.; Aziz, F.; Sarker, M.R.; Zeb, M.; Ibrahim, M.A.; Mohamed, R. Fabrication and microelectronic properties of hybrid organic–inorganic (poly (9, 9, dioctylfluorene)/p-Si) heterojunction for electronic applications. Appl. Sci. 2020, 10, 7974. [Google Scholar] [CrossRef]
- Tahir, M.; Sayyad, M.H.; Wahab, F.; Khan, D.N. The electrical characterization of Ag/N-BuHHPDI/p-Si heterojunction by current–voltage characteristics. Mod. Phys. Lett. B 2013, 27, 1350080. [Google Scholar] [CrossRef]
- Ali, S.; Tahir, M.; Mehboob, N.; Wahab, F.; Langford, S.J.; Mohd Said, S.; Sarker, M.R.; Julai, S.; Hamid Md Ali, S. Amino anthraquinone: Synthesis, characterization, and its application as an active material in environmental sensors. Materials 2020, 13, 960. [Google Scholar] [CrossRef] [PubMed]
- Yakuphanoglu, F. Photovoltaic properties of hybrid organic/inorganic semiconductor photodiode. Synth. Met. 2007, 157, 859–862. [Google Scholar] [CrossRef]
- Muhammad, F.; Tahir, M.; Zeb, M.; Uddin, S.I.; Ahmed, S. Enhancement in the microelectronic properties of a PFB–CdSe quantum dots nanocomposite based schottky barrier diode. J. Electron. Mater. 2019, 48, 5169–5175. [Google Scholar] [CrossRef]
- Aydın, M.; Türüt, A. The electrical characteristics of Sn/methyl-red/p-type Si/Al contacts. Microelectron. Eng. 2007, 84, 2875–2882. [Google Scholar] [CrossRef]
- Islam, Z.U.; Tahir, M.; Syed, W.A.; Aziz, F.; Wahab, F.; Said, S.M.; Sarker, M.R.; Md Ali, S.H.; Sabri, M.F.M. Fabrication and photovoltaic properties of organic solar cell based on zinc phthalocyanine. Energies 2020, 13, 962. [Google Scholar] [CrossRef]
- Sharma, K.; Sharma, V.; Sharma, S. Dye-sensitized solar cells: Fundamentals and current status. Nanoscale Res. Lett. 2018, 13, 1–46. [Google Scholar] [CrossRef]
- Chen, Z.; Chen, X.; Jia, Z.; Zhou, G.; Xu, J.; Wu, Y.; Xia, X.; Li, X.; Zhang, X.; Deng, C. Triplet exciton formation for non-radiative voltage loss in high-efficiency nonfullerene organic solar cells. Joule 2021, 5, 1832–1844. [Google Scholar] [CrossRef]
- Pirashanthan, A.; Velauthapillai, D.; Robertson, N.; Ravirajan, P. Lithium doped poly (3-hexylthiophene) for efficient hole transporter and sensitizer in metal free quaterthiophene dye treated hybrid solar cells. Sci. Rep. 2021, 11, 20157. [Google Scholar] [CrossRef] [PubMed]
- Lestini, E.; Andrei, C.; Zerulla, D. Linear self-assembly and grafting of gold nanorods into arrayed micrometer-long nanowires on a silicon wafer via a combined top-down/bottom-up approach. PLoS ONE 2018, 13, e0195859. [Google Scholar] [CrossRef] [PubMed]
Element | Weight (%) | Atomic (%) |
---|---|---|
C K | 70.66 | 89.26 |
O K | 2.26 | 2.14 |
Na K | 0.44 | 0.29 |
S K | 13.08 | 6.19 |
Ca K | 0.38 | 0.14 |
Ru L | 13.18 | 1.98 |
Peaks at Energy (cm−1) | Bonds Nature/Dynamics |
---|---|
728 | Out-of-Plane C–H Bend |
795 | In-Plane C–H Bend |
880 | Out-of-Plane C–H Bend |
1042 | In-Plane C–H Bend |
1232 | In-Plane C–H Bend |
1346 | In-Plane Pyrrole Stretch |
1466 | C–C Benzene Stretch |
1596 | C–C Benzene Stretch |
1699 | C–C Benzene Stretch |
2101 | C–H Stretch |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tahir, M.; Din, I.U.; Zeb, M.; Aziz, F.; Wahab, F.; Gul, Z.; Alamgeer; Sarker, M.R.; Ali, S.; Ali, S.H.M.; et al. Thin Films Characterization and Study of N749-Black Dye for Photovoltaic Applications. Coatings 2022, 12, 1163. https://doi.org/10.3390/coatings12081163
Tahir M, Din IU, Zeb M, Aziz F, Wahab F, Gul Z, Alamgeer, Sarker MR, Ali S, Ali SHM, et al. Thin Films Characterization and Study of N749-Black Dye for Photovoltaic Applications. Coatings. 2022; 12(8):1163. https://doi.org/10.3390/coatings12081163
Chicago/Turabian StyleTahir, Muhammad, Ikram Ud Din, Muhammad Zeb, Fakhra Aziz, Fazal Wahab, Zahid Gul, Alamgeer, Mahidur R. Sarker, Sajad Ali, Sawal Hamid Md Ali, and et al. 2022. "Thin Films Characterization and Study of N749-Black Dye for Photovoltaic Applications" Coatings 12, no. 8: 1163. https://doi.org/10.3390/coatings12081163
APA StyleTahir, M., Din, I. U., Zeb, M., Aziz, F., Wahab, F., Gul, Z., Alamgeer, Sarker, M. R., Ali, S., Ali, S. H. M., & Kymissis, I. (2022). Thin Films Characterization and Study of N749-Black Dye for Photovoltaic Applications. Coatings, 12(8), 1163. https://doi.org/10.3390/coatings12081163