Influence of Powder Plasticity on Bonding Strength of Cold-Sprayed Copper Coating
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cu Feedstocks and Annealing
2.2. Cold-Sprayed Cu Coatings
2.3. Microstructure Analysis
3. Results
3.1. Microstructures and Mechanical Properties of Cu Powders
3.1.1. Morphology
3.1.2. Grain Structure and Strain State
3.2. Microstructures and Mechanical Properties of Cold-Sprayed Coatings
3.2.1. Hardness and Bonding Strength
3.2.2. Grain Structure and Strain State
4. Discussion
4.1. Powder Plasticity
4.2. Recrystallized Twin Grains
5. Conclusions
- The plasticity of Cu powder is improved through strain release and low GB angle after annealing treatment at 500 °C for 30 min. This plasticity plays a role in increasing the bonding strength of cold-sprayed coatings, characterized by an excellent dynamic recrystallization structure and a bonding strength increment ratio up to 1.98.
- The Cu powders with an asymmetric dendritic morphology are detrimental for intensive plastic deformation, which results in the lowest bonding strength (8.0 ± 0.7 MPa) of cold-sprayed coating.
- Recrystallized twin grains are beneficial for plasticity, and they can help increase the bonding strength of cold-sprayed coatings.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mohammadpour, E.; Liew, W.Y.H.; Radevski, N.; Lee, S.; Mondinos, N.; Altarawneh, M.; Minakshi, M.; Amri, A.; Rowles, M.R.; Lim, H.N.; et al. High temperature (up to 1200 °C) thermal-mechanical stability of Si and Ni doped CrN framework coatings. J. Mater. Res. Technol. 2021, 14, 2406–2419. [Google Scholar] [CrossRef]
- Papyrin, A.N.; Kosarev, V.F.; Klinkov, S.; Alkhimov, A.P.; Fomin, V. Cold Spray Technology; Elsevier: Amsterdam, The Netherlands, 2007. [Google Scholar]
- Alkhimov, A.P.; Papyrin, A.N.; Kosarev, V.F.; Nesterovich, N.I.; Shuspanov, M.M. Gas-Dynamic Spraying Method for Applying a Coating. U.S. Patent No. 5,302,414, 12 April 1994. [Google Scholar]
- Voyer, J.; Stoltenhoff, T.; Kreye, H. Development of Cold Sprayed Coatings. In Thermal Spray 2003: Advancing the Science and Applying the Technology, Proceedings of the 2003 International Thermal Spray Conference, Orlando, FL, USA, 5–8 May 2003; Marple, B.R., Moreau, C., Eds.; ASM International: Almere, The Netherlands, 2003; pp. 71–78. [Google Scholar]
- Stoltenhoff, T.; Kreye, H.; Richter, H.J. An analysis of the cold spray process and its coatings. J. Therm. Spray Technol. 2002, 11, 542–550. [Google Scholar] [CrossRef]
- Assadi, H.; Gärtner, F.; Stoltenhoff, T.; Kreye, H. Bonding mechanism in cold gas spraying. Acta Mater. 2003, 51, 4379–4394. [Google Scholar] [CrossRef]
- Schmidt, T.; Gärtner, F.; Assadi, H.; Kreye, H. Development of a generalized parameter window for cold spray deposition. Acta Mater. 2006, 54, 729–742. [Google Scholar] [CrossRef]
- Grujicic, M.; Zhao, C.L.; DeRosset, W.S.; Helfritch, D. Adiabatic shear instability based mechanism for particles/substrate bonding in the cold-gas dynamic-spray process. Mater. Des. 2004, 25, 681–688. [Google Scholar] [CrossRef]
- Dykhuizen, R.C.; Smith, M.F.; Gilmore, D.L.; Neiser, R.A.; Jiang, X.; Sampath, S. Impact of high velocity cold spray particles. J. Therm. Spray Technol. 1999, 8, 559–564. [Google Scholar] [CrossRef]
- Li, W.Y.; Liao, H.L.; Li, C.J.; Bang, H.S.; Coddet, C. Numerical simulation of deformation behavior of Al particles impacting on Al substrate and effect of surface oxide films on interfacial bonding in cold spraying. Appl. Surf. Sci. 2007, 253, 5084–5091. [Google Scholar] [CrossRef]
- Champagne, V.K. The Cold Spray Materials Deposition Process: Fundamentals and Applications; CRC: Cambridge, UK, 2007. [Google Scholar]
- Gilmore, D.L.; Dykhuizen, R.C.; Neiser, R.A.; Smith, M.F.; Roemer, T.J. Particle velocity and deposition efficiency in the cold spray process. J. Therm. Spray Technol. 1999, 8, 576–582. [Google Scholar] [CrossRef]
- Gärtner, F.; Stoltenhoff, T.; Schmidt, T.; Kreye, H. The cold spray process and its potential for industrial applications. J. Therm. Spray Technol. 2006, 15, 223–232. [Google Scholar] [CrossRef]
- Schmidt, T.; Assadi, H.; Gärtner, F.; Richter, H.; Stoltenhoff, T.; Kreye, H.; Klassen, T. From particle acceleration to impact and bonding in cold spraying. J. Therm. Spray Technol. 2009, 18, 794–808. [Google Scholar] [CrossRef]
- Huang, R.; Ma, W.; Fukanuma, H. Development of ultra-strong adhesive strength coatings using cold spray. Surf. Coat. Technol. 2014, 258, 832–841. [Google Scholar] [CrossRef]
- Kim, K.; Watanabe, M.; Kuroda, S. Bonding mechanisms of thermally softened metallic powder particles and substrates impacted at high velocity. Surf. Coat. Technol. 2010, 204, 2175–2180. [Google Scholar] [CrossRef]
- Meng, F.; Hu, D.; Gao, Y.; Yue, S.; Song, J. Cold-spray bonding mechanisms and deposition efficiency prediction for particle/substrate with distinct deformability. Mater. Design 2016, 109, 503–510. [Google Scholar] [CrossRef]
- Hussain, T.; McCartney, D.G.; Shipway, P.H.; Zhang, D. Bonding mechanisms in cold spraying: The contributions of metallurgical and mechanical components. J. Therm. Spray Technol. 2009, 18, 364–379. [Google Scholar] [CrossRef]
- Huppmann, W.J.; Dalal, K. Metallographic Atlas of Powder Metallurgy; Verlag Schmid Gmbh: Freiburg, Germany, 1986. [Google Scholar]
- Kosarev, V.F.; Klinkov, S.V.; Melamed, B.M.; Nepochatov, Y.K.; Ryashin, N.S.; Shikalov, V.S. Cold spraying for power electronics: Deposition of thick topologically patterned copper layers on ceramics. In Proceedings of the International Conference on the Methods of Aerophysical Research, Novosibirsk, Russia, 13–19 August 2018; p. 030047. [Google Scholar]
- Perry, J.; Richer, P.; Jodoin, B.; Matte, E. Pin fin array heat sinks by cold spray additive manufacturing: Economics of powder recycling. In Proceedings of the International Thermal Spray Conference, Orlando, FL, USA, 7–9 May 2018; ASM International: Almere, The Netherlands, 2018. [Google Scholar]
- Wei, F.J.; Chou, B.Y.; Tsai, S.Y.; Fung, K.Z. Thermomechanical properties of cold-sprayed copper coatings from differently fabricated powders. Surf. Coat. Technol. 2022, 434, 128128. [Google Scholar] [CrossRef]
- Jakupi, P.; Keech, P.G.; Barker, I.; Ramamurthy, S.; Jacklin, R.L.; Shoesmith, D.W.; Moser, D.E. Characterization of commercially cold sprayed copper coatings and determination of the effects of impacting copper powder velocities. J. Nucl. Mater. 2015, 466, 1–11. [Google Scholar] [CrossRef]
- Yu, M.; Li, W.Y.; Wang, F.F.; Suo, X.K.; Liao, H.L. Effect of particle and substrate preheating on particle deformation behavior in cold spraying. Surf. Coat. Technol. 2013, 220, 174–178. [Google Scholar] [CrossRef]
- Yin, S.; Wang, X.; Suo, X.; Liao, H.; Guo, Z.; Li, W.; Coddet, C. Deposition behavior of thermally softened copper particles in cold spraying. Acta Mater. 2013, 61, 5105–5118. [Google Scholar] [CrossRef]
- Fukanuma, H.; Ohno, N.; Sun, B.; Huang, R. In-flight particle velocity measurements with DPV-2000 in cold spray. Surf. Coat. Technol. 2006, 201, 1935–1941. [Google Scholar] [CrossRef]
- Li, Y.J.; Luo, X.T.; Li, C.J. Dependency of deposition behavior, microstructure and properties of cold sprayed Cu on morphology and porosity of the powder. Surf. Coat. Technol. 2017, 328, 304–312. [Google Scholar] [CrossRef]
- Li, Y.J.; Luo, X.T.; Rashid, H.; Li, C.J. A new approach to prepare fully dense Cu with high conductivities and anti-corrosion performance by cold spray. J. Alloy. Comp. 2018, 740, 406–413. [Google Scholar] [CrossRef]
- Luo, X.T.; Ge, Y.; Xie, Y.; Wei, Y.; Huang, R.; Ma, N.; Ramachandran, C.S.; Li, C.J. Dynamic evolution of oxide scale on the surfaces of feed stock particles from cracking and segmenting to peel-off while cold spraying copper powder having a high oxygen content. J. Mater. Sci. Technol. 2021, 67, 105–115. [Google Scholar] [CrossRef]
- Hsu, W.C.; Chang, L.; Kao, P.W. Study of potential recrystallization nuclei in the cold-rolled microstructure of an electrical steel by electron backscatter diffraction. Mater. Sci. Eng. 2019, 580, 012034. [Google Scholar] [CrossRef]
- Borchers, C.; Gärtner, F.; Stoltenhoff, T.; Assadi, H.; Kreye, H. Microstructural and macroscopic properties of cold sprayed copper coatings. J. Appl. Phys. 2003, 93, 10064–10070. [Google Scholar] [CrossRef]
- Feng, Y.; Li, W.; Guo, C.; Gong, M.; Yang, K. Mechanical property improvement induced by nanoscaled deformation twins in cold-sprayed Cu coatings. Mater. Sci. Eng. A 2018, 727, 119–122. [Google Scholar] [CrossRef]
- Wang, Y.B.; Sui, M.L.; Ma, E. In situ observation of twin boundary migration in copper with nanoscale twins during tensile deformation. Philos. Mag. Lett. 2007, 87, 935–942. [Google Scholar] [CrossRef]
- Nowell, M.M.; Witt, R.A.; True, B. EBSD sample preparation: Techniques, tips, and tricks. Microsc. Microanal. 2005, 11 (Suppl. 2), 504–505. [Google Scholar] [CrossRef]
- Murr, L.E.; Niou, C.-S.; Pappu, S.; Rivas, J.M.; Quinones, S.A. LEDS in ultra-high strain-rate deformation. Phys. Status Solidi A 1995, 149, 253–274. [Google Scholar] [CrossRef]
Powders | EP | WA | GA | |||
---|---|---|---|---|---|---|
Original | Annealed | Original | Annealed | Original | Annealed | |
Morphology | Dendritic | Near-spherical | Spherical | |||
Powder size D10/D50/D90 (μm) | 10/30/67 | − | 7/11/20 | − | 17/40/79 | − |
% KAM (>1.5°) | 2.3% | 0% | 0.5% | 0.3% | 2.3% | 0% |
Coatings | OEP | AEP | OWA | AWA | OGA | AGA |
---|---|---|---|---|---|---|
Hardness (HV0.1) | 154 | 120 | 156 | 119 | 136 | 105 |
Bonding strength (MPa) | 8.0 ± 0.7 | 11.3 ± 1.8 | 12.0 ± 1.5 | 21.3 ± 4.4 | 23.0 ± 2.4 | 45.6 ± 3.2 |
% KAM (>1.5°) | 1.2% | 0.7% | 3.0% | 0.5% | 1.5% | 0% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, F.-J.; Chou, B.-Y.; Fung, K.-Z.; Tsai, S.-Y.; Yang, C.-W. Influence of Powder Plasticity on Bonding Strength of Cold-Sprayed Copper Coating. Coatings 2022, 12, 1197. https://doi.org/10.3390/coatings12081197
Wei F-J, Chou B-Y, Fung K-Z, Tsai S-Y, Yang C-W. Influence of Powder Plasticity on Bonding Strength of Cold-Sprayed Copper Coating. Coatings. 2022; 12(8):1197. https://doi.org/10.3390/coatings12081197
Chicago/Turabian StyleWei, Fu-Jun, Bang-Yen Chou, Kuan-Zong Fung, Shu-Yi Tsai, and Chung-Wei Yang. 2022. "Influence of Powder Plasticity on Bonding Strength of Cold-Sprayed Copper Coating" Coatings 12, no. 8: 1197. https://doi.org/10.3390/coatings12081197
APA StyleWei, F. -J., Chou, B. -Y., Fung, K. -Z., Tsai, S. -Y., & Yang, C. -W. (2022). Influence of Powder Plasticity on Bonding Strength of Cold-Sprayed Copper Coating. Coatings, 12(8), 1197. https://doi.org/10.3390/coatings12081197