Open AccessArticle
Oxide Nanostructured Coating for Power Lines with Anti-Icing Effect
by
Andrey Vladimirovcih Blinov, Dmitry Aleksandrovich Kostyukov, Maria Anatolevna Yasnaya, Pavel Aleksandrovich Zvada, Lyudmila Pavlovna Arefeva, Valery Nikolaevich Varavka, Roman Aleksandrovich Zvezdilin, Alexander Aleksandrovich Kravtsov, David Guramievich Maglakelidze, Alexey Borisovich Golik, Alexey Alekseevich Gvozdenko, Natalia Viatcheslavovna Lazareva, Elena Nikolaevna Kushch, Vadim Nikolaevich Goncharov, Maxim Andreevich Kolodkin, Mohammad Ali Shariati and Andrey Ashotovich Nagdalian
Cited by 5 | Viewed by 2574
Abstract
This paper presents the results of the development of a technology to obtain a nanostructured coating for the protection of overhead wires and the possibility of their application in the electric power industry. The paper provides an analysis of available data on methods
[...] Read more.
This paper presents the results of the development of a technology to obtain a nanostructured coating for the protection of overhead wires and the possibility of their application in the electric power industry. The paper provides an analysis of available data on methods of combating ice in different countries, ways to protect the surface of metals from environmental influences, and new materials used for protection. We studied the possibility of using a protective nanostructured coating to protect overhead wires. A technology for obtaining a protective nanostructured coating based on silicon oxide and methods for applying it to the wire of overhead lines are proposed. The analysis of the elemental composition and surface morphology of overhead line wires with protective coating is carried out by scanning electron microscopy. The influence of the nanostructured coating on the high-frequency signal bandwidth and wire resistance using a PCIe-6351 data acquisition board, equipped with a BNC-2120 terminal module generating a frequency signal were determined using the National Instruments LabVIEW software package. The subject of the study was a 110 kV overhead power line with a protective coating developed in this work. By analyzing the calculation, we obtained the operating requirements of the developed nanostructured coating. As a result, we developed a protective coating satisfying the working conditions and investigated its properties. In the final phase of the experiment, we tested the electrical characteristics of overhead wires with the developed protective coating.
Full article
►▼
Show Figures