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Abstract: Thermal barrier coatings (TBCs) suffer from the thermo-chemo-mechanical coupling action
of thermal shock and calcium–magnesium–alumina–silicate (CMAS) corrosion. However, the failure
mechanism of TBCs under the synergistic effect of thermal shock and CMAS corrosion is still unclear
due to a lack of an environmental simulator. Herein, an 8YSZ ceramic coating is deposited on a
PtAl bond coating/DD419 nickel-based single crystal superalloy substrate using the electron beam
physical vapor deposition (EB-PVD) method. The thermo-chemo-mechanical coupling effect of
TBCs is achieved in a self-developed environmental simulator. The interaction of volume expansion
induced by the phase transition of ZrO2, structural degradation and thermal fatigue further increases
the out-of-plane tensile stress and in-plane shear stress in the ceramic coating, which accelerates
the initiation and propagation of surface vertical cracks and horizontal cracks. As multiple surface
vertical cracks propagate to the interface and merge with interfacial cracks, the ceramic coating spalls
from the substrate.

Keywords: electron beam physical vapor deposition (EB-PVD); thermal shock; CMAS corrosion;
thermo-chemo-mechanical coupling; failure mechanism

1. Introduction

Thermal barrier coatings (TBCs) are widely applied to gas turbine engines due to
their excellent mechanical properties, high temperature resistance, low thermal conduc-
tivity and excellent thermal cycling performance [1–3]. TBCs can reduce the temperature
of hot components and effectively improve the thrust–weight ratio and performance of
aeroengines [4,5]. The coating 7~8 wt% yttria-stabilized zirconia (8YSZ) is widely used as a
top ceramic coating in TBCs. There are two common methods to prepare the top ceramic
coating: electron beam physical vapor deposition (EB-PVD) and plasma spraying (PS).
EB-PVD TBCs are typically columnar crystal structures with good strain tolerance and
damage resistance at high temperatures [6–8]. However, turbine blades are subjected to
high-temperature oxidation, particle erosion and calcium–magnesium–alumina–silicate
(CMAS) corrosion during the service. CMAS corrosion has become the most dangerous
factor leading to coating failure [9–11]. As the service temperature increases, the siliceous
minerals (dust, sand and volcanic ash) ingest the air deposit on the surface of hot-section
components, resulting in glassy CMAS melts when the surface temperature exceeds 1200 ◦C.
CMAS penetrates the 8YSZ coating, destroying the structural and chemical integrity of
TBCs [12]. Furthermore, TBCs are subjected to the thermo-chemo-mechanical coupling ac-
tion of thermal shock and CMAS corrosion. Therefore, it is urgent to investigate the failure
mechanism of TBCs under the synergistic effect of thermal shock and CMAS corrosion.

Considerable work has been conducted to study the failure mechanism of TBCs. 8YSZ
TBCs prepared using EB-PVD generate thermally grown oxide (TGO) during thermal
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cycling tests, and the thermal mismatch induces tensile stress, which, in turn, promotes
the occurrence of cracks, resulting in the failure of the coating at the interface [13,14]. In
addition, EB-PVD TBCs exhibit a complex failure mechanism in a corrosive environment.
The surface Zr4+ competes with Ca2+ for octahedral-coordinated garnet sites [15], and the
molten CMAS infiltrates the middle area of the coating and fills the internal voids. The
molten CMAS in the coating begins to solidify and increases the density of the whole
coating, which causes changes in the thermal–mechanical properties of TBCs, such as
elastic modulus [16,17]. The dissolution of Y2O3 in CMAS leads to the phase transition of
t-ZrO2 to m-ZrO2 in the coating, and the mismatch stress caused by the volume difference
of this phase transition accelerates the failure of TBCs during the cooling process [17,18].
Meanwhile, the CMAS reaches the bond’s surface coating, leading to the formation of
anorthite [19]. These factors lead to structural degradation of the coating and coating
spallation. However, most of these experiments are in a constant temperature muffle
furnace, which may affect the actual service performance [20]. TBCs are subjected to high
temperature, flame impact and CMAS corrosion in the actual service environment. A
huge difference exists between the actual service environment and a constant-temperature
furnace condition [21]. A series of environmental simulators are being developed to
approach the actual service environment. Laser beam and gas burners have been used
as heating sources [22–26] to simulate the high-temperature stage, but they are far from
reaching the harsh environmental conditions of TBCs. Furthermore, previous research
focused on thermal shock or high-temperature CMAS corrosion. The synergistic effect of
thermal shock and CMAS corrosion on TBCs is still lacking.

In this paper, an 8YSZ ceramic coating was deposited on a PtAl bond coating/DD419
nickel-based single-crystal superalloy substrate using the EB-PVD method. The thermo-
chemo-mechanical coupling effect of TBCs was achieved in a self-developed environmental
simulator. The failure mechanism of TBCs under the synergistic effect of thermal shock
and CMAS corrosion was investigated.

2. Experimental Procedure
2.1. TBC Preparation

During the preparation of the TBC specimens, a nickel-based single-crystal superalloy
(DD419) with a diameter of 30 mm and a thickness of 6 mm was selected as the substrate.
The specific composition is shown in Table 1. The single-phase β-(Ni,Pt)Al coating was
used as a bond coating. The preparation of the β-(Ni,Pt)Al coating included three steps [27]:
Pt electroplating of the substrate, vacuum annealing and vapor-aluminizing treatment.
Before depositing the bond coating, the substrate was ground with SiC papers and humidly
grit-blasted with alumina (220# mesh) under 0.3 MPa. It was then degreased in boiling
NaOH aqueous solution of 50 g/L for 10 min and ultrasonically cleaned in acetone and
ethanol for 10 min each. Afterwards, the Pt plating was deposited in an alkaline Pt-plating
solution at 80 ◦C with an effective Pt concentration of 6 g/L. The chemical composition of
the Pt electroplating solution is given in Table 2. The plating current density was 9 mA/cm2,
and the deposition rate was about 3 µm/h. A deposited Pt plating with a thickness of 5 µm
was obtained. Prior to aluminization, vacuum annealing was conducted at 1040 ◦C for 1 h
to eliminate the residual stress and dilute the Pt content on the surface. High-pressure gas
aluminizing treatment was conducted in a gaseous aluminizing furnace at 1070 ◦C for 5 h.
The heating rate was kept below 8 ◦C/min. Detailed information on the preparation process
of a single-phase β-(Ni,Pt)Al coating is described in the literature [27]. An 8YSZ ceramic
coating with a thickness of 250 µm was deposited on the bond coating using the EB-PVD
method. The detailed preparation parameters are shown in Table 3. A commercial 8YSZ
ceramic target was used in the EB-PVD process. Before depositing the ceramic coating,
the base material was annealed under a vacuum at 870 ◦C for three hours. To preheat the
8YSZ ceramic target, the preheating current and time were set as 0.01~0.1 A and 1~15 min,
respectively. After preheating, the operating current was increased to 0.1~1 A. The average
thickness of the ceramic coating was 250 µm, and the deposition rate was 3.5 µm/min.
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Table 1. Normal chemical composition (wt.%) of single-crystal superalloy DD419.

Co Ta Cr W Mo Re Al Ni

7.5 6.5 7 5 1.5 3 6.2 Bal.

Table 2. Chemical composition of the alkaline Pt-plating solution.

Composition Pt(NH3)2(NO2)2 Na(NO2) Na3C6H5O7·2H2O CH3COONa·3H2O pH

Value 10 g/L 10 g/L 12 g/L 6 g/L 9

Table 3. Preparation parameters of EB-PVD for 8YSZ ceramic coating.

Layers Current of
Electron Beam (A)

Rotation Speed
(rpm) Voltage (KV) Heating

Temperature (◦C)
Pressure in the Vacuum

Chamber (Pa)

Ceramic coating 0.1~1.0 20 10 900 ± 50 133.32 × 10−5

According to the sediment collected from the actual engine parts, the CMAS powder
synthesized in the laboratory had a chemical composition of 33 mol% CaO, 9 mol% MgO,
13 mol%Al2O3 and 45 mol% SiO2. Four kinds of oxides were mixed and ground in a ball
mill for 8 h. Alcohol was added during ball milling to ensure uniform mixing before the
mixed slurry was dried in an oven at 80 ◦C. The dried powder was calcined in a high-
temperature muffle furnace at 1500 ◦C for 2 h to alter it to a molten state and then quenched
in distilled water quickly. Finally, the CMAS powder was obtained with grinding and
sieving (500# mesh).

2.2. Environmental Simulator of TBCs and Determination of Infrared Emissivity

The synergistic effect of thermal shock and CMAS corrosion on TBC performance was
investigated in our developed environmental simulator, as shown in Figure 1. Aviation
kerosene was used as fuel, and nitrogen was used to provide sufficient pressure for kerosene.
Pure oxygen was used as a combustion improver to assist the full combustion of kerosene.
A Laval nozzle was developed to produce the supersonic flame. The surface temperature
of the TBC was monitored using an infrared thermometer.

Using a KT15II (Heitronics, Wiesbaden, Germany), the temperature was automati-
cally controlled during the experiment by adjusting the distance between the supersonic
flame-spraying gun and the specimen. An infrared thermal imager (GF309, Teledyne
FLIR, Wilsonville, OR, USA) was used to obtain the temperature distribution of the TBC
surface [28]. The substrate surface was cooled by the compressed air, which allowed the
temperature gradient on the specimen’s surface to be realized. The substrate temperature
was measured using thermocouples during a thermal shock test. In order to reduce the
randomness and error in the experiment, three 8YSZ coating specimens were used to repeat
the experiment.

To ensure the temperature accuracy of non-contact infrared temperature measure-
ment, the evolution of emissivity with temperature was determined. An illustration of
the determination of infrared emissivity is shown in Figure 2. The determination of in-
frared emissivity is related to the distance and angle between the laser source and the
specimen [29]. Figure 2 shows a movable calibrated emissivity device, which can determine
the evolution of emissivity with temperature at different distances and angles. During
the thermal shock test, the angle between the infrared thermometer and the specimen
surface was 30◦. A specimen was put in a high-temperature muffle furnace, and the furnace
was heated to a specified temperature. Two thermocouples were placed on both sides of
the specimen to measure the temperature. When the temperature difference between the
two thermocouples was less than 3 ◦C, the temperature was kept for 30 min to ensure the
isothermal condition. The infrared thermal imager was used to measure the surface temper-
ature of the TBC. The emissivity was changed until the temperature corresponded to that of
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the thermocouple. The emissivity at the corresponding temperature was then determined.
The angle was fixed at 30◦, and the distance between the infrared thermometer and the
specimen was changed to obtain the emissivity at different distances. The emissivity data
are given in Table 4. When the test temperature was 1250 ◦C and the distance was 53 cm,
the emissivity was determined to be 0.963.
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Table 4. Evolution of emissivity of the 8YSZ ceramic coating with temperature.

Distance
Temperature

1000 ◦C 1100 ◦C 1200 ◦C 1250 ◦C

70 cm 0.981 0.978 0.976 0.975
60 cm 0.982 0.976 0.975 0.973
53 cm 0.978 0.971 0.968 0.963

2.3. High-Temperature Experiment of TBCs under the Synergistic Effect of Thermal Shock and
CMAS Corrosion

The CMAS powder and alcohol were evenly mixed to a viscous liquid paste and then
uniformly coated on the surface of the TBC specimen and dried in a drying oven for 24 h.
The CMAS concentration coated on the TBC surface was 10 mg/cm2. The specimen was
heated in a high-temperature furnace at 950 ◦C for 0.5 h, ensuring that the CMAS was
sintered onto the TBC surface. The specimen coated with CMAS was put in the fixture.
The thermal shock cycle is composed of heating, holding and cooling stages. As shown
in Figure 3, the surface temperature of the TBC was heated from room temperature to
1250 ◦C in 30 s, held at 1250 ◦C for 90 s and then cooled to 400 ◦C in 120 s. The experimental
parameters of the environmental simulator were tested to meet the requirement of the
thermal shock cycle. The detailed experimental parameters of the environmental simulator
are shown in Table 5. The specimen was cooled to room temperature, and 10 mg/cm2

of CMAS coated the TBC surface every ten thermal shock cycles. It is worth noting that
CMAS is continuously blown away and redeposited on the blade surface in an actual
service environment. Herein, CMAS was recoated every 10 cycles to replenish the amount
of CMAS over time. Coating failure is defined when the spallation area of the coating
reaches 10% of the entire area.
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Table 5. Experimental parameters of environmental simulator test system.

Oxygen Inlet
Pressure

Oxygen Inlet
Flow

Kerosene Outlet
Pressure Kerosene Flow Air Pressure Cooling Gas Inlet

Flow

1.5 MPa 180 L/min 0.6 MPa 5 L/h 0.7~0.79 MPa 40 L/min

2.4. Failure Characterization

The phase composition of the ceramic coating after thermal shock failure was deter-
mined using X-ray diffraction (XRD, CuKα, Ultimate IV, RIGAKU, Tokyo, Japan). The
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scanning range and scanning speed were 10~90◦ and 0.02◦/s, respectively. The surface
and cross-section morphologies were obtained using a scanning electron microscope (SEM,
TESCAN MIRA3, Brno, Czech Republic). The corresponding element distribution of the
coating after failure was detected using an energy spectrometer (EDS, Oxford X MAX20,
Oxford, UK). Based on the above methods, the failure mechanism of TBCs under the
synergistic effect of thermal shock and CMAS corrosion was analyzed.

3. Results and Discussion
3.1. Phase Structure of 8YSZ Ceramic Coating

XRD patterns of the TBC surface of the as-sprayed specimen and coating after failure
are shown in Figure 4. The characteristic peak of the as-sprayed specimen surface is a
typical structure of a t-ZrO2 phase, and there is no occurrence of an impure phase. After the
thermal shock cycles, the surface of coating failure had m-ZrO2 phase peaks in addition to
the t-ZrO2 phase. This suggests that CMAS melts and penetrates the ceramic coating along
the EB-PVD columnar structure during the thermal shock process. Meanwhile, CMAS
reacted with 8YSZ, and the yttrium element in the coating dissolved in the CMAS, leading
to the phase transition of ZrO2 from the tetragonal phase to the monoclinic phase [12,30].
Moreover, the spinel (MgAl2O4) and anorthite (CaAl2Si2O8) phases were detected on the
coating surface due to the reactions between the CMAS paste and the top ceramic coating
at high temperatures (1250 ◦C), as shown in Figure 4b.
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3.2. Macro-Morphology and Infrared Thermography Characteristics of TBCs

Figure 5 shows the macro-morphology of three specimens after thermal shock cycles.
Some light gray-green spots can be seen on the TBC surface; they are traces of CMAS
corrosion. As the number of thermal shock cycles increased, the number of CMAS spots
was reduced and the color was lighter. This implies that the molten CMAS penetrated the
ceramic coating under the interaction of high temperature and the impact force of a high-
speed flame. At the same time, the ceramic coating started to spall from the substrate, and
the spallation region continued to expand. The depletion of yttrium accelerated the phase
transformation, which caused a 3%~5% volume expansion [16]. Meanwhile, CMAS reacted
with 8YSZ, resulting in the performance degradation of the ceramic coating. This, combined
with the action of the cold–hot alternating cycle initiated and propagated cracks in the
ceramic coating, leading to coating spallation. Figure 6 shows the evolution of infrared
thermal images with thermal shock cycles during the holding stage. The temperature
distribution was relatively uniform at first. As the number of thermal shock cycle increased,
some abnormal temperature regions occurred on the TBC’s surface. When compared with
the macro-morphology in Figure 5, the abnormal temperature regions correspond to the
spallation areas. The abnormal temperature regions increased with an increase in the
number of thermal shock cycles.
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3.3. Microstructure Characterization

SEM images of the TBC surface and the element distribution of the residual coating
after failure are shown in Figure 7. As shown, the coating surface of the columnar structure
is covered with dark gray CMAS spots. In the thermal shock cycle process, CMAS melted
and filled the columnar gap of the ceramic coating. The top ceramic layer became denser,
reducing the strain tolerance of the coating. Figure 7e shows the surface element distri-
bution of Figure 7d. There was an enriched mixture of Ca, Mg, Al, and Si attached to the
surface. Molten CMAS slowly penetrated along the columnar gaps at a high temperature.
The yttrium element then dissolved in the CMAS, resulting in the phase transition of ZrO2.
The volume expansion induced by phase transition generated tensile stress, which caused
coating spallation.
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Cross-sectional SEM images of the TBC specimen after failure are shown in Figure 8.
As shown in the completely exfoliated area A, the ceramic coating was delaminated from
the interface between the ceramic coating and the TGO. In the partially exfoliated area
(area B), surface vertical cracks and interfacial cracks occurred in the ceramic coating. As
multiple surface vertical cracks propagated to the interface and merged with interfacial
cracks, the ceramic coating spalled from the substrate. Even in an intact area (area C),
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surface vertical cracks and horizontal cracks were found in the ceramic coating. A similar
experimental phenomenon was obtained by Mercer et al. [31] Due to CMAS infiltration
and the chemical reaction between CMAS and 8YSZ, the columnar morphology of the
top ceramic layer disappeared. In one sample, due to the loss of the yttrium element, the
volume expansion induced by the phase transition of ZrO2 produced tensile stress, which
led to fatal horizontal cracks in the coating. In another, the molten CMAS penetrated the
coating and filled the columnar gap, which caused a reduction in the columnar gap. The
top ceramic layer became denser, and the strain tolerance of the coating reduced. This
structural degradation led to an increase in the elastic modulus and thermal conductivity,
which further drove the generation of horizontal cracks [32,33].
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Figure 8. Cross-sectional SEM images of three TBC specimens after failure: (a–c) cross-sectional
morphologies of areas A–C, respectively. Areas A, B, and C represent the complete peeling area,
peeling edge area, non-peeling area, respectively. The corresponding microstructures are shown
in (a–c).

Figure 9 shows the cross-sectional EDS results of region C. Because the content of
Ca and Si in CMAS is relatively high, the distribution levels of Ca and Si elements are
used to determine CMAS infiltration depth. The EDS mappings in Figure 9 show that the
Ca and Si elements completely infiltrated the interface between the top coating and the
bond coat, indicating that the coating was completely infiltrated by CMAS. Careful point
EDS measurements at higher magnifications and at different thickness points within the
inter-columnar gaps of TBCs are shown Table 6, and they further confirm that Ca, Mg,
Al and Si elements penetrated the entire cross-section of the ceramic coating. Because
CMAS was supplied every ten thermal shock cycles, the CMAS concentration near the top
ceramic layer was higher than that of other positions. CMAS’ attack on the TBC surface
was more serious, resulting in severe structural degradation. Combined with the cold–hot
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alternating cycle in thermal shock, the out-of-plane tensile stress and in-plane shear stress
occurred at the interface between the infiltration and no-infiltration regions; this led to
cracks initiating in the coating and coating spallation. This phenomenon is consistent
with the result reported by Zhang et al. [34]. Furthermore, a numerical model considering
CMAS infiltration, phase transformation and thermal expansion has proven that CMAS
infiltration induces significant out-of-plane tensile stress in the ceramic coating, which
results in vertical cracks. Phase transformation leads to a further increase in out-of-plane
tensile stress and in-plane shear stress, accelerating the coating failure [35].
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Figure 9. Cross-sectional EDS mapping of the residual coating after failure: (a) specimen 1; (b) spec-
imen 2; and (c) specimen 3. Points A–C, D–F, G–I are the different thickness points within 8YSZ
coating of the three specimens, and the corresponding EDS results are shown in Table 6.

Table 6. Chemical compositions of the marked regions in Figure 9.

Location
Composition (at.%)

Ca Mg Al Si

A 41.60 6.88 17.36 34.16
B 37.71 7.80 19.80 34.69
C 24.53 4.25 13.82 57.40
D 42.56 7.53 12.87 37.04
E 41.48 6.12 13.48 38.92
F 31.18 4.52 10.79 53.51
G 45.89 6.94 8.54 38.63
H 42.32 5.61 10.05 42.02
I 29.23 5.02 9.67 56.08

4. Conclusions

An 8YSZ ceramic coating was deposited on a PtAl bond coating/DD419 nickel-
based single crystal superalloy substrate using the EB-PVD method. The thermo-chemo-
mechanical coupling effect of TBCs was studied in a self-developed environmental sim-
ulator. The failure mechanism of TBCs under the synergistic effect of thermal shock and
CMAS corrosion was investigated using infrared thermography, XRD, SEM and EDS. The
main conclusions include:

(1) The temperature distribution and failure process of TBCs were detected in real
time using infrared thermography. Combining the infrared thermal images with macro-
morphology, it could be observed that the abnormal temperature regions correspond to the
damage and spallation position.

(2) CMAS reacted with 8YSZ, and the yttrium element in the coating dissolved in the
CMAS, leading to the phase transition of ZrO2 from the tetragonal phase to the monoclinic
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phase. Meanwhile, CMAS filled the columnar gap of the ceramic coating, which caused
structural degradation and the disappearance of columnar morphology. The top ceramic
layer became denser, and the strain tolerance of the coating reduced.

(3) The failure mechanism of TBCs is that the interaction of volume expansion induced
by the phase transition of ZrO2, structural degradation and thermal fatigue further in-
creases the out-of-plane tensile stress and in-plane shear stress in the ceramic coating. This
accelerates the initiation and propagation of surface vertical cracks and horizontal cracks.
As multiple surface vertical cracks propagate to the interface and merge with interfacial
cracks, the ceramic coating spalls from the substrate.
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