Influence of Seawater Erosion on The Strength and Pore Structure of Cement Soil with Ferronickel Slag Powder
Abstract
:1. Introduction
2. Test Plan
3. Test Results and Analysis
3.1. Apparent Erosion
3.2. Influence of the Content of Ferronickel Slag Powder on the Compressive Strength of Cement Soil
3.3. Influence of Marine Environment on Compressive Strength of Cement Soil
4. NMR Analysis of the Four−Pore Structure
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Srijaroen, C.; Hoy, M.; Horpibulsuk, S.; Rachan, R.; Arulrajah, A. Soil-Cement Screw Pile: Alternative Pile for Low- and Medium-Rise Buildings in Soft Bangkok Clay. J. Constr. Eng. Manag. 2021, 147, 04020173. [Google Scholar] [CrossRef]
- Santos Nascimento, E.S.; Souza, P.C.D.; Oliveira, H.A.D.; Melo Júnior, C.M.; Oliveira Almeida, V.G.D.; Melo, F.M.C.D. Soil-cement brick with granite cutting residue reuse. J. Clean. Prod. 2021, 321, 129002. [Google Scholar] [CrossRef]
- Chen, F.; Tong, S. Experimental study on the strength of soil-cement with additions of mineral powder and ferronickel slag powder. Int. J. Min. Miner. Eng. 2020, 11, 218–227. [Google Scholar] [CrossRef]
- Chen, F.; Tong, S. Impermeability Characteristics of Treated Marine Soft Soil with Ferronickel Slag Powder. Geofluids 2022, 2022, 1–10. [Google Scholar] [CrossRef]
- Taslimi Paein Afrakoti, M.; Janalizadeh Choobbasti, A.; Ghadakpour, M.; Soleimani Kutanaei, S. Investigation of the effect of the coal wastes on the mechanical properties of the cement-treated sandy soil. Constr. Build. Mater. 2020, 239, 117848. [Google Scholar] [CrossRef]
- Manita, D.; Ashim, K.D. Use of Soil–Cement Bed to Improve Bearing Capacity of Stone Columns. Int. J. Geomech. 2020, 20, 6020008. [Google Scholar]
- Cao, B.; Zhang, Y.; Xu, J.; Al-Tabbaa, A. Use of superabsorbent polymer in soil-cement subsurface barriers for enhanced heavy metal sorption and self-healing. Sci. Total Environ. 2022, 831, 154708. [Google Scholar] [CrossRef]
- Sun, Y.; Cheng, J.; Li, Y.; Chen, Q.; Zhang, W.; Shao, G. Model test of the combined subgrade treatment by hydraulic sand fills and soil-cement mixing piles. Bull. Eng. Geol. Environ. 2020, 79, 2907–2918. [Google Scholar] [CrossRef]
- Xiong, F.; Xing, H.; Li, H. Experimental study on the effects of multiple corrosive ion coexistence on soil-cement characteristics. Soils Found. 2019, 59, 398–406. [Google Scholar] [CrossRef]
- Chen, F.; Tong, S. Effect of Ferronickel Slag Powder on Strength of Soil in Marine Environment. Adv. Civ. Eng. 2020, 2020, 1–10. [Google Scholar] [CrossRef]
- Xing, H.; Yang, X.; Xu, C.; Ye, G. Strength characteristics and mechanisms of salt-rich soil–cement. Eng. Geol. 2009, 103, 33–38. [Google Scholar] [CrossRef]
- Zhang, H.; Xing, H.-F.; Li, H.-M. Mechanical characteristic and microstructure of salt-rich cement soil. Bull. Eng. Geol. Environ. 2022, 81, 1–12. [Google Scholar] [CrossRef]
- Haofeng, X.; Feng, X.; Feng, Z.; Wang, D.; Wiltshire, J. Improvement for the strength of salt-rich soft soil reinforced by cement. Mar. Georesources Geotechnol. 2018, 36, 38–42. [Google Scholar] [CrossRef]
- Mardani-Aghabaglou, A.; Kalıpcılar, I.; İnan Sezer, G.; Sezer, A.; Altun, S. Freeze-thaw resistance and chloride-ion penetration of cement-stabilized clay exposed to sulfate attack. Appl. Clay Sci. 2015, 115, 179–188. [Google Scholar] [CrossRef]
- Pham, V.N.; Turner, B.; Huang, J.; Kelly, R. Long-term strength of soil-cement columns in coastal areas. Soils Found. 2017, 57, 645–654. [Google Scholar] [CrossRef]
- Li, Q.; Chen, J.; Shi, Q.; Zhao, S. Macroscopic and Microscopic Mechanisms of Cement-Stabilized Soft Clay Mixed with Seawater by Adding Ultrafine Silica Fume. Adv. Mater. Sci. Eng. 2014, 2014, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Mousavi, S.E. Utilization of Silica Fume to Maximize the Filler and Pozzolanic Effects of Stabilized Soil with Cement. Geotech. Geol. Eng. 2018, 36, 77–87. [Google Scholar] [CrossRef]
- Mangat, P.S.; Khatib, J.M. Influence of Fly Ash, Silica Fume, and Slag on Sulfate Resistance of Concrete. Mater. J. 1993, 2, 542–552. [Google Scholar]
- Rerkpiboon, A.; Tangchirapat, W.; Jaturapitakkul, C. Strength, chloride resistance, and expansion of concretes containing ground bagasse ash. Constr. Build. Mater. 2015, 101, 983–989. [Google Scholar] [CrossRef]
- Asensio De Lucas, E.; Medina, C.; Frías, M.; Sánchez De Rojas, M.I. Clay-based construction and demolition waste as a pozzolanic addition in blended cements. Effect on sulfate resistance. Constr. Build. Mater. 2016, 127, 950–958. [Google Scholar] [CrossRef]
- Chen, F.; Tong, S. Study on strength degradation of soil-cement mixed with composite ferronickel slag powder in marine environment. J. Hydroelectr. Eng. 2020, 39, 102–109. [Google Scholar]
- Chen, F.; Tong, S.; Hao, W.; Shen, S. Dynamic Compression Properties of Ni-Fe Slag Powder Soil Cement under Impact Load. Coatings 2022, 12, 1003. [Google Scholar] [CrossRef]
- Zhao, H.; Wu, X.; Huang, Y.; Zhang, P.; Tian, Q.; Liu, J. Investigation of moisture transport in cement-based materials using low-field nuclear magnetic resonance imaging. Mag. Concr. Res. 2021, 73, 252–270. [Google Scholar] [CrossRef]
No. | Cement (%) | Water Cement Ratio | Compound Admixture Addition (%) | Environment |
---|---|---|---|---|
A−0 | 15 | 0.5 | 0 | Purified water |
A−10 | 10 | |||
A−20 | 20 | |||
A−30 | 30 | |||
A−4 | 45 | |||
A−50 | 50 | |||
A−60 | 60 | |||
B−0 | 0 | Seawater | ||
B−10 | 10 | |||
B−20 | 20 | |||
B−30 | 30 | |||
B−45 | 45 | |||
B−50 | 50 | |||
B−60 | 60 |
Proportion | 0% | 10% | 20% | 30% | 45% | 50% | 60% | |
---|---|---|---|---|---|---|---|---|
Coefficient | ||||||||
K7 | 0.875 | 0.892 | 0.905 | 0.911 | 0.943 | 0.966 | 0.934 | |
K28 | 0.852 | 0.868 | 0.891 | 0.914 | 0.940 | 0.948 | 0.913 |
Proportion | 0% | 10% | 20% | 30% | 45% | 50% | 60% | |
---|---|---|---|---|---|---|---|---|
Loss Rate | ||||||||
N7 | 12.8% | 10.8% | 9.5% | 8.9% | 5.7% | 3.4% | 6.6% | |
N28 | 14.6% | 13.2% | 10.9% | 8.6% | 6.0% | 5.2% | 8.2% |
No. | A−0 | A−30 | A−45 | A−60 | B−0 | B−30 | B−45 | B−60 |
---|---|---|---|---|---|---|---|---|
Porosity/% | 45.42 | 44.72 | 42.15 | 46.02 | 48.60 | 46.52 | 43.48 | 46.83 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, F.; Tong, S.; Wang, H.; Chen, W. Influence of Seawater Erosion on The Strength and Pore Structure of Cement Soil with Ferronickel Slag Powder. Coatings 2023, 13, 100. https://doi.org/10.3390/coatings13010100
Chen F, Tong S, Wang H, Chen W. Influence of Seawater Erosion on The Strength and Pore Structure of Cement Soil with Ferronickel Slag Powder. Coatings. 2023; 13(1):100. https://doi.org/10.3390/coatings13010100
Chicago/Turabian StyleChen, Feng, Shenghao Tong, Hao Wang, and Weizhen Chen. 2023. "Influence of Seawater Erosion on The Strength and Pore Structure of Cement Soil with Ferronickel Slag Powder" Coatings 13, no. 1: 100. https://doi.org/10.3390/coatings13010100
APA StyleChen, F., Tong, S., Wang, H., & Chen, W. (2023). Influence of Seawater Erosion on The Strength and Pore Structure of Cement Soil with Ferronickel Slag Powder. Coatings, 13(1), 100. https://doi.org/10.3390/coatings13010100