Development of Catalyst-Free Self-Healing Biobased UV-Curable Coatings via Maleate Monoester Transesterification
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of TOMA
2.3. Synthesis of TOMAH
2.4. Curing of TOMAH Resins
2.5. Characterization
2.5.1. Fourier-Transformed Infrared Spectroscopy (FTIR)
2.5.2. Nuclear Magnetic Resonance (NMR)
2.5.3. Gel Content (Cgel) and Biobased Contents (Cbio)
2.5.4. UV-Kinetics Behavior
2.5.5. Dynamic Mechanical Analysis (DMA)
2.5.6. Thermal Gravimetric Analysis (TGA)
2.5.7. Stress Relaxation Test
2.5.8. Mechanical Properties
2.5.9. Coating Properties
2.5.10. Repairing Properties
2.5.11. Shape Memory Properties
2.5.12. Recyclable Properties
3. Results
3.1. Characterization of TOMA and TOMAH
3.2. UV-Curing Kinetics
3.3. Gel Contents and Biobased Contents
3.4. Thermal, Mechanical and Coating Properties of the TOMAH/H Resins
3.5. Self-Healing Properties
3.6. Shape Memory and Recyclable Properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xu, J.; Lu, P.; Wang, L.; Fan, Y.; Tian, W.; Xu, J.; Zhao, J.; Ren, L.; Ming, W. UV curable stimuli-responsive coatings with antifogging and oil-repellent performances. J. Mater. Chem. A 2021, 9, 26028–26035. [Google Scholar] [CrossRef]
- Wang, Z.; Liang, H.; Yang, H.; Xiong, L.; Zhou, J.; Huang, S.; Zhao, C.; Zhong, J.; Fan, X. UV-curable self-healing polyurethane coating based on thiol-ene and Diels-Alder double click reactions. Prog. Org. Coat. 2019, 137, 105282. [Google Scholar] [CrossRef]
- Yu, K.; Xin, A.; Du, H.; Li, Y.; Wang, Q. Additive manufacturing of self-healing elastomers. NPG Asia Mater. 2019, 11, 7. [Google Scholar] [CrossRef] [Green Version]
- Huang, J.; Sun, J.; Zhang, R.; Zou, R.; Liu, X.; Yang, Z.; Yuan, T. Improvement of biodegradability of UV-curable adhesives modified by a novel polyurethane acrylate. Prog. Org. Coat. 2016, 95, 20–25. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, H.; Zhu, L.; He, T.; Li, W.; Liu, H. Synthesis and characterization of acrylic modified epoxy prepolymers for UV-curable adhesives. Rare Met. 2011, 30, 567–571. [Google Scholar] [CrossRef]
- Zhu, G.; Zhang, J.; Huang, J.; Yu, X.; Cheng, J.; Shang, Q.; Hu, Y.; Liu, C.; Hu, L.; Zhou, Y. High-performance 3D printing UV-curable resins derived from soybean oil and gallic acid. Green Chem. 2021, 23, 5911–5923. [Google Scholar] [CrossRef]
- Guo, Y.; Ji, Z.; Zhang, Y.; Wang, X.; Zhou, F. Solvent-free and photocurable polyimide inks for 3D printing. J. Mater. Chem. A 2017, 5, 16307–16314. [Google Scholar] [CrossRef]
- Newnham, R.E.; Ruschau, G.R. Electromechanical Properties of Smart Materials. J. Intell. Mater. Syst. Struct. 1993, 4, 289–294. [Google Scholar] [CrossRef]
- Dry, C. Passive tuneable fibers and matrices. Int. J. Mod. Phys. B 1992, 6, 2763–2771. [Google Scholar] [CrossRef]
- Hamilton, A.R.; Sottos, N.R.; White, S.R. Self-Healing of Internal Damage in Synthetic Vascular Materials. Adv. Mater. 2010, 22, 5159–5163. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, H.; Zhou, Q. Preparation and characterization of microcapsules based self-healing coatings containing epoxy ester as healing agent. Prog. Org. Coat. 2018, 125, 403–410. [Google Scholar] [CrossRef]
- Wu, X.; Wang, J.; Huang, J.; Yang, S. Robust, Stretchable, and Self-Healable Supramolecular Elastomers Synergistically Cross-Linked by Hydrogen Bonds and Coordination Bonds. ACS Appl. Mater. Interfaces 2019, 11, 7387–7396. [Google Scholar] [CrossRef]
- Xie, Z.; Hu, B.L.; Li, R.W.; Zhang, Q. Hydrogen Bonding in Self-Healing Elastomers. ACS Omega 2021, 6, 9319–9333. [Google Scholar] [CrossRef]
- Wu, Y.; Zeng, Y.; Chen, Y.; Li, C.; Qiu, R.; Liu, W. Photocurable 3D Printing of High Toughness and Self-Healing Hydrogels for Customized Wearable Flexible Sensors. Adv. Funct. Mater. 2021, 31, 2107202. [Google Scholar] [CrossRef]
- Muroi, R.; Sugane, K.; Shibata, M. Self-healing thiol-ene networks based on cyclodextrin-adamantane host-guest interactions. Polymer 2019, 185, 121990. [Google Scholar] [CrossRef]
- Feng, X.; Li, G. Versatile Phosphate Diester-Based Flame Retardant Vitrimers via Catalyst-Free Mixed Transesterification. ACS Appl. Mater. Interfaces 2020, 12, 57486–57496. [Google Scholar] [CrossRef]
- Hamachi, L.S.; Rau, D.A.; Arrington, C.B.; Sheppard, D.T.; Fortman, D.J.; Long, T.E.; Williams, C.B.; Dichtel, W.R. Dissociative Carbamate Exchange Anneals 3D Printed Acrylates. ACS Appl. Mater. Interfaces 2021, 13, 38680–38687. [Google Scholar] [CrossRef]
- Jun, S.; Kim, S.O.; Lee, H.-J.; Han, C.J.; Lee, C.-J.; Yu, Y.-T.; Lee, C.-R.; Ju, B.-K.; Kim, Y.; Kim, J.-W. Transparent, pressure-sensitive, and healable e-skin from a UV-cured polymer comprising dynamic urea bonds. J. Mater. Chem. A 2019, 7, 3101–3111. [Google Scholar] [CrossRef]
- Li, H.; Zhang, B.; Wang, R.; Yang, X.; He, X.; Ye, H.; Cheng, J.; Yuan, C.; Zhang, Y.F.; Ge, Q. Solvent-Free Upcycling Vitrimers through Digital Light Processing-Based 3D Printing and Bond Exchange Reaction. Adv. Funct. Mater. 2022, 32, 2111030. [Google Scholar] [CrossRef]
- Liu, J.; Zhou, Z.; Su, X.; Cao, J.; Chen, M.; Liu, R. Stiff UV-Curable self-healing coating based on double reversible networks containing diels-alder cross-linking and hydrogen bonds. Prog. Org. Coat. 2020, 146, 105699. [Google Scholar] [CrossRef]
- Robinson, L.L.; Self, J.L.; Fusi, A.D.; Bates, M.W.; de Alaniz, J.R.; Hawker, C.J.; Bates, C.M.; Sample, C.S. Chemical and Mechanical Tunability of 3D-Printed Dynamic Covalent Networks Based on Boronate Esters. ACS Macro Lett. 2021, 10, 857–863. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Liu, X.; Li, W.; Ru, Y.; Li, Y.; Sun, A.; Wei, L. Engineered self-healable elastomer with giant strength and toughness via phase regulation and mechano-responsive self-reinforcing. Chem. Eng. J. 2021, 410, 128300. [Google Scholar] [CrossRef]
- Zhao, D.; Du, Z.; Liu, S.; Wu, Y.; Guan, T.; Sun, Q.; Sun, N.; Ren, B. UV Light Curable Self-Healing Superamphiphobic Coatings by Photopromoted Disulfide Exchange Reaction. ACS Appl. Polym. Mater. 2019, 1, 2951–2960. [Google Scholar] [CrossRef]
- Sieredzinska, B.; Zhang, Q.; Berg, K.; Flapper, J.; Feringa, B.L. Photo-crosslinking polymers by dynamic covalent disulfide bonds. Chem. Commun. 2021, 57, 9838–9841. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Dai, S.; Bi, L.; Jiang, J.; Zhang, H.; Chen, Y. Catalyst-Free Self-Healing Bio-Based Polymers: Robust Mechanical Properties, Shape Memory, and Recyclability. J. Agric. Food Chem. 2021, 69, 9338–9349. [Google Scholar] [CrossRef] [PubMed]
- Lu, C.; Wang, C.; Yu, J.; Wang, J.; Chu, F. Two-Step 3 D-Printing Approach toward Sustainable, Repairable, Fluorescent Shape-Memory Thermosets Derived from Cellulose and Rosin. ChemSusChem 2020, 13, 893–902. [Google Scholar] [CrossRef]
- Wang, S.; Dai, J.; Teng, N.; Hu, J.; Zhao, W.; Liu, X. Synthesis of Mechanically Robust and Self-Healing UV-Curable Materials from Renewable Feedstock. ACS Sustain. Chem. Eng. 2020, 8, 16842–16852. [Google Scholar] [CrossRef]
- Liu, T.; Zhang, S.; Hao, C.; Verdi, C.; Liu, W.; Liu, H.; Zhang, J. Glycerol Induced Catalyst-Free Curing of Epoxy and Vitrimer Preparation. Macromol. Rapid Commun. 2019, 40, e1800889. [Google Scholar] [CrossRef]
- Xu, Y.-Z.; Fu, P.; Dai, S.-L.; Zhang, H.-B.; Bi, L.-W.; Jiang, J.-X.; Chen, Y.-X. Catalyst-free self-healing fully bio-based vitrimers derived from tung oil: Strong mechanical properties, shape memory, and recyclability. Ind. Crops Prod. 2021, 171, 113978. [Google Scholar] [CrossRef]
- Delahaye, M.; Winne, J.M.; Du Prez, F.E. Internal Catalysis in Covalent Adaptable Networks: Phthalate Monoester Transesterification as a Versatile Dynamic Cross-Linking Chemistry. J. Am. Chem. Soc. 2019, 141, 15277–15287. [Google Scholar] [CrossRef]
- Ma, S.; Jiang, Y.; Liu, X.; Fan, L.; Zhu, J. Bio-based tetrafunctional crosslink agent from gallic acid and its enhanced soybean oil-based UV-cured coatings with high performance. RSC Adv. 2014, 4, 23036–23042. [Google Scholar] [CrossRef]
- Hu, Y.; Zhu, G.; Zhang, J.; Huang, J.; Yu, X.; Shang, Q.; An, R.; Liu, C.; Hu, L.; Zhou, Y. Rubber Seed Oil-Based UV-Curable Polyurethane Acrylate Resins for Digital Light Processing (DLP) 3D Printing. Molecules 2021, 26, 5455. [Google Scholar] [CrossRef]
- Zhang, J.; Huang, J.; Zhu, G.; Yu, X.; Cheng, J.; Liu, Z.; Hu, Y.; Shang, Q.; Liu, C.; Hu, L.; et al. Self-healing, recyclable, and removable UV-curable coatings derived from tung oil and malic acid. Green Chem. 2021, 23, 5875–5886. [Google Scholar] [CrossRef]
- Zhang, J.; Shang, Q.; Hu, Y.; Zhang, F.; Huang, J.; Lu, J.; Cheng, J.; Liu, C.; Hu, L.; Miao, H.; et al. High-biobased-content UV-curable oligomers derived from tung oil and citric acid: Microwave-assisted synthesis and properties. Eur. Polym. J. 2020, 140, 109997. [Google Scholar] [CrossRef]
- Zhang, J.; Hu, Y.; Zhang, F.; Lu, J.; Huang, J.; Liu, C.; Jia, P.; Hu, L.; An, R.; Zhou, Y. Recent Progress in Microwave-assisted Modification of Vegetable Oils or Their Derivatives. Curr. Org. Chem. 2020, 24, 870–884. [Google Scholar] [CrossRef]
- Wu, Q.; Hu, Y.; Tang, J.; Zhang, J.; Wang, C.; Shang, Q.; Feng, G.; Liu, C.; Zhou, Y.; Lei, W. High-Performance Soybean-Oil-Based Epoxy Acrylate Resins: “Green” Synthesis and Application in UV-Curable Coatings. ACS Sustain. Chem. Eng. 2018, 6, 8340–8349. [Google Scholar] [CrossRef]
- Tang, J.; Zhang, J.; Lu, J.; Huang, J.; Zhang, F.; Hu, Y.; Liu, C.; An, R.; Miao, H.; Chen, Y.; et al. Preparation and Properties of Plant-Oil-Based Epoxy Acrylate-Like Resins for UV-Curable Coatings. Polymers 2020, 12, 2165. [Google Scholar] [CrossRef]
- Li, P.; Ma, S.; Dai, J.; Liu, X.; Jiang, Y.; Wang, S.; Wei, J.; Chen, J.; Zhu, J. Itaconic Acid as a Green Alternative to Acrylic Acid for Producing a Soybean Oil-Based Thermoset: Synthesis and Properties. ACS Sustain. Chem. Eng. 2016, 5, 1228–1236. [Google Scholar] [CrossRef]
- Zhao, D.; Liu, S.; Wu, Y.; Guan, T.; Sun, N.; Ren, B. Self-healing UV light-curable resins containing disulfide group: Synthesis and application in UV coatings. Prog. Org. Coat. 2019, 133, 289–298. [Google Scholar] [CrossRef]
- Ma, S.; Wei, J.; Jia, Z.; Yu, T.; Yuan, W.; Li, Q.; Wang, S.; You, S.; Liu, R.; Zhu, J. Readily recyclable, high-performance thermosetting materials based on a lignin-derived spiro diacetal trigger. J. Mater. Chem. A 2019, 7, 1233–1243. [Google Scholar] [CrossRef]
- Hao, C.; Liu, T.; Zhang, S.; Liu, W.; Shan, Y.; Zhang, J. Triethanolamine-Mediated Covalent Adaptable Epoxy Network: Excellent Mechanical Properties, Fast Repairing, and Easy Recycling. Macromolecules 2020, 53, 3110–3118. [Google Scholar] [CrossRef]
- Dhers, S.; Vantomme, G.; Avérous, L. A fully bio-based polyimine vitrimer derived from fructose. Green Chem. 2019, 21, 1596–1601. [Google Scholar] [CrossRef]
- Qiu, M.; Wu, S.; Fang, S.; Tang, Z.; Guo, B. Sustainable, recyclable and robust elastomers enabled by exchangeable interfacial cross-linking. J. Mater. Chem. A 2018, 6, 13607–13612. [Google Scholar] [CrossRef]
- Yang, X.; Guo, L.; Xu, X.; Shang, S.; Liu, H. A fully bio-based epoxy vitrimer: Self-healing, triple-shape memory and reprocessing triggered by dynamic covalent bond exchange. Mater. Des. 2020, 186, 108248. [Google Scholar] [CrossRef]
- Huang, J.; Zhang, J.; Zhu, G.; Yu, X.; Hu, Y.; Shang, Q.; Chen, J.; Hu, L.; Zhou, Y.; Liu, C. Self-healing, high-performance, and high-biobased-content UV-curable coatings derived from rubber seed oil and itaconic acid. Prog. Org. Coat. 2021, 159, 106391. [Google Scholar] [CrossRef]
- Wei, H.-Q.; Chen, Y.; Zhang, T.; Liu, L.; Qiao, J.Y.; Leng, J. Thermal, mechanical, and shape-memory properties of nanorubber-toughened, epoxy-based shape-memory nanocomposites. J. Appl. Polym. Sci. 2018, 135, 45780. [Google Scholar] [CrossRef]
Samples | TOMAH (g) | HEMA (g) | D1173 (g) |
---|---|---|---|
TOMAH/H10% | 9 | 1 | 0.3 |
TOMAH/H20% | 8 | 2 | 0.3 |
TOMAH/H30% | 7 | 3 | 0.3 |
Samples | αfa (%) | Rpb (s−1) | Cgelc (%) | Cbiod (%) |
---|---|---|---|---|
TOMAH/H10% | 86.7 | 0.196 | 94.1 ± 0.2 | 46.5 |
TOMAH/H20% | 88.2 | 0.223 | 94.6 ± 0.1 | 41.4 |
TOMAH/H30% | 90.8 | 0.228 | 94.8 ± 0.2 | 36.2 |
Samples | E′25a (MPa) | Tgb (°C) | E′Tg+50c (MPa) | νed (mol/m3) | T5e (°C) | Tpf (°C) | wcharg (%) |
---|---|---|---|---|---|---|---|
TOMAH/H10% | 1505.1 | 81.1 | 18.6 | 1844 | 303.9 | 429.9 | 2.51 |
TOMAH/H20% | 1653.7 | 86.8 | 17.7 | 1731 | 301.4 | 433.2 | 2.30 |
TOMAH/H30% | 1756.2 | 90.0 | 16.1 | 1563 | 296.4 | 434.0 | 3.17 |
Samples | σa (MPa) | E b (MPa) | ε c (%) |
---|---|---|---|
TOMAH/H10% | 26.7 ± 0.3 | 243.4 ± 9.1 | 15.5 ± 0.9 |
TOMAH/H20% | 28.0 ± 0.1 | 280.5 ± 28.5 | 21.1 ± 0.4 |
TOMAH/H30% | 31.3 ± 1.1 | 291.0 ± 10.0 | 16.3 ± 2.3 |
Samples | Adhesion (Grade) | Pencil Hardness | Flexibility (mm) | Solvent Resistance (Rubs) | |||
---|---|---|---|---|---|---|---|
Water | Ethanol | Acetone | Toluene | ||||
TOMAH/H10% | 1 | HB | 2 | >200 | >200 | >200 | >200 |
TOMAH/H20% | 1 | H | 2 | >200 | >200 | >200 | >200 |
TOMAH/H30% | 1 | 2H | 2 | >200 | >200 | >200 | >200 |
Cycle | Rsf (%) | Rsr (%) |
---|---|---|
Cycle 1 | 98.9 | 65.8 |
Cycle 2 | 98.9 | 63.8 |
Cycle3 | 99.1 | 62.3 |
Cycle 4 | 99.0 | 66.9 |
Samples | σa (MPa) | Re d (%) | Eb (MPa) | Re d (%) | ε c (%) | Re d (%) |
---|---|---|---|---|---|---|
Origin | 28.0 ± 0.1 | / | 280.5 ± 28.5 | / | 21.1 ± 0.4 | / |
Cycle1 | 9.61 ± 0.7 | 34.3 | 92.9 ± 15.3 | 33.1 | 11.7 ± 1.2 | 55.5 |
Cycle2 | 4.5 ± 0.3 | 16.1 | 57.9 ± 11.2 | 20.6 | 8.6 ± 0.3 | 40.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, X.; Hu, Y.; Lei, W.; Liu, C.; Zhou, Y. Development of Catalyst-Free Self-Healing Biobased UV-Curable Coatings via Maleate Monoester Transesterification. Coatings 2023, 13, 110. https://doi.org/10.3390/coatings13010110
Yu X, Hu Y, Lei W, Liu C, Zhou Y. Development of Catalyst-Free Self-Healing Biobased UV-Curable Coatings via Maleate Monoester Transesterification. Coatings. 2023; 13(1):110. https://doi.org/10.3390/coatings13010110
Chicago/Turabian StyleYu, Xixi, Yun Hu, Wen Lei, Chengguo Liu, and Yonghong Zhou. 2023. "Development of Catalyst-Free Self-Healing Biobased UV-Curable Coatings via Maleate Monoester Transesterification" Coatings 13, no. 1: 110. https://doi.org/10.3390/coatings13010110
APA StyleYu, X., Hu, Y., Lei, W., Liu, C., & Zhou, Y. (2023). Development of Catalyst-Free Self-Healing Biobased UV-Curable Coatings via Maleate Monoester Transesterification. Coatings, 13(1), 110. https://doi.org/10.3390/coatings13010110