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Abstract: Composite materials "base–transition layer–surface metal layer (Ta/Ti)" were produced
using a complex vacuum technology including magnetron sputtering. The structure (by scanning
electron microscopy, Auger electron spectroscopy, X-ray diffractometry) and mechanical properties
were studied. An almost linear increase in the thickness of both the surface and transition layers
was observed with increasing deposition time and power; however, the growth of the surface layer
slowed down with increasing power above some critical value. The transition zone with the growth
of time stopped growing upon reaching about 300 nm and was formed approximately 2 times
slower than the surface one (and about 3.5 times slower with power). It was noted that with equal
sputtering–deposition parameters, the layer growth rates for tantalum and titanium were the same.
In the sample with a Ta surface layer deposited on titanium, a strongly textured complex structure
with alpha and beta Ta was observed, which is slightly related to the initial substrate structure and
the underlying layer. However, even at small thicknesses of the surface layer, the co-deposition of
tantalum and titanium contributes to the formation of a single tantalum phase, alpha.

Keywords: tantalum; titanium; magnetron sputtering; surface layer; composite

1. Introduction

Tantalum (Ta), titanium (Ti) and their compounds have not ceased to arouse functional
interest for humans for decades as a material applicable in various spheres of human
life: in optics (transmitting, antireflection, filtering, reflecting, absorbing media) [1–3],
electronics (conductors, semiconductors, dielectrics) [4,5], machine and instrument making,
construction and everyday life (tribological, wear-resistant, functional, protective coatings,
resistant to aggressive environments, decorative, antibacterial, etc.) [6–10], environmental
cleanup and agriculture [11–13], medicine (biocompatible, adhesive intermediates) [14–25],
and etc., due to its significant characteristics (biocompatibility, resistance to aggressive
media, wear resistance, electrical, light and thermal conductivity, photocatalytic activity,
radiopacity, strength and/or plasticity, etc.), also including in the form of coatings, thin
films and surface layers.

Composites, including layered ones, are unique structures that allow effectively com-
bining, improving and forming in radically new characteristics compared with the original
components that are inaccessible to classical materials, which has led to their widespread
use [26–43]. In particular, composite structures with surface layers such as TaTiON for
optics and electronics, TiTa (at a shape memory ratio), Ta/Ti/TiN/Ti/DLC (diamond-like
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carbon) and Ta/Ti/DLC for implantology, TaN-(Ta,Ti)N-TiN-Ti for energy, etc. are gain-
ing importance in the modern world [44–47]. For example, to obtain corrosion-resistant
biocompatible coatings on superelastic alloys, similar in mechanical properties to living
tissues, but containing toxic elements, a mixture of tantalum and titanium is used, because
at a certain ratio, this mixture also exhibits similar mechanical characteristics [45]. This
mixture is obtained by depositing tantalum layers on a titanium-containing substrate by
the magnetron method with intermittent mixing by cycling electron-beam additive tech-
nique. The process seems to be quite complicated and requires the preliminary presence of
titanium in the substrate. That is, the problem of joint deposition of these two metals (in
series or in parallel) is now quite relevant.

A fairly popular method for creating composite surfaces is physical deposition in
a vacuum is vacuum ion-plasma methods, especially a variety of magnetron sputtering,
which allows, at a fairly low cost of time and resources, effectively obtaining high-quality
thin surface layers and coatings of various compositions and structures on a substrate of
almost any nature and geometry [48–59]. At the same time, the resulting layers parameters
are directly connected with the time and power of sputtering, the deposition distance, the
state of the substrate surface and other process parameters, which can vary within wide
limits. They determine the phase composition of the new surface. If a multi-component
spray system used, the variability of the results increases many times over.

The purpose of this work was to study the features of substance deposition in the
region of magnetron sputtering of a tantalum-titanium binary system under varying process
conditions and their relationship with the structure of the layers formed during vacuum
ion-plasma production of layered metal composite materials.

2. Materials and Methods

In this work, the creation of layered composite materials of various nature was carried
out using ion-vacuum technologies by forming surface layers of tantalum and titanium on
various substrates (base material) using a DC magnetron in an argon gas environment at a
Torr International facility (New Windsor, NY, USA).

The use of magnetron sputtering to create surface layers makes it possible to avoid
overheating of the substrate by bombarding electrons due to their retention at the sputtered
target, which is extremely important for substrate materials with low melting temperatures
or a phase structure sensitive to temperature changes, such as, for example, in superelastic
titanium alloys: heat treatment makes it possible to change static properties and cyclic
loading under operating conditions with a broad diapason of deformations and is essential
for the stabilization of properties, creation and successful application of the product.

The formation of a new surface of a mixed composition on the substrate was carried
out in two ways: sequential deposition of a layer from one metal onto a layer from another
and simultaneous deposition of both metals. To test the sputtering modes before obtaining
composite materials with a mixed surface, surface layers of tantalum or titanium were
deposited in the form of separate single layers.

Disks made of chemically pure tantalum, titanium, or a bicomponent structure were
used as a sputtered target. As a basis for the composites, plates made of titanium alloys
TiNi, TiNbMo, TiNbZr, steel, copper, titanium, etc., 10 mm × 10 mm × 0.5 mm in size,
were used. The plates were treated with abrasive sandpaper (grit from 400 to 800) and
polished (to a mirror surface) with the addition of diamond suspensions with a particle
size of 3, 1 and 0.05 microns to remove flat dents and defects. The depth of surface defects
after treatment did not exceed 1 µm. Substrates made of steel, copper and glass/SiO2 are
of interest as a basis for the production of functional materials for a broad diapason of
applications (electronics, optics, structural materials, etc.), and superelastic titanium alloys
in medicine. For cleaning, activation and polishing, the substrate surface was bombarded
with argon ions at U = 900 V and I = 80 mA prior to deposition, i.e., preliminary ion etched.

Surface layers were obtained under the following process conditions (deposition parame-
ters): (1) current I ~ 400–1100 mA, voltage U ~ 360–700 V (power supply power ≈ 135–600 W);
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(2) deposition time from 5 to 120 min; (3) deposition distance (distance from the target to
the substrate) 40–250 mm. The temperature on the substrate surface did not exceed 150◦C. The
working and residual pressures in the vacuum chamber were ~0.4 and 4× 10−4 Pa, respectively.

Morphology, type of destruction during mechanical tests and layer-by-layer elemental
composition (including using transverse sections) of the surface of materials were studied
using a scanning electron microscope TESCAN VEGA II SBU (TESCAN, Brno, Czech Re-
public) equipped with an attachment for energy-dispersive analysis INCA Energy (Oxford
Instruments, High Wycombe, UK), a JAMP-9500F Auger electron spectrometer (JEOL,
Tokyo, Japan) in combination with ion etching under argon bombardment at an angle of
30◦, and a GDS 850 A glow-discharge atomic emission spectrometer (Leco, St Joseph, MI,
USA) with a high-frequency alternating current source.

X-ray diffraction patterns were obtained on ARL X′TRA (Thermo Fisher Scientific)
SARL, Ecublens, Switzerland) and UltimaIV (Rigaku, Tokyo, Japan) instruments, in CuKα

radiation in parallel beam geometry. The device was calibrated according to the standard
sample NIST SRM-1976a, the error in the position of reflections did not exceed 0.01 ◦2θ.
The crystal lattice parameter was refined by extrapolation to θ = 900 using the Nelson-Riley
method in the Origin-2017 program (OriginLab Corporation, Northampton, MA, USA), the
magnitude of the crystal lattice microdeformation of the main phase was determined using
the Williamson–Hall method in the HighScore Plus program (version 3.0.3, PANanalytical,
Almelo, the Netherlands). The quantitative content of crystalline phases was estimated
by the method of corundum numbers. Before the study, the surface of the samples was
cleaned by washing in ethyl alcohol and distilled water.

Static tests were carried out on a universal testing machine INSTRON 3382 (Instron
Corp., Norwood, MA, USA) with a stretching speed of 1 mm/min with an accuracy of the
traverse speed of ± 0.2% of the value of the set speed. The processing of test results in
determining the characteristics of mechanical properties was carried out in accordance with
GOST RF standard 10446-80 (ISO 6892-1:2019(E)) using INSTRON Bluehill 2.0 software.
For each experimental point, 3–5 samples were tested. The values of yield strength, tensile
strength, relative elongation and Young’s modulus were determined.

3. Results and Discussion

In general, identical results were obtained when studying the composition of the
obtained surface monolayers: the upper surface layer is enriched with oxygen to a depth of
20 nm due to active surface adsorption; the deeper layer consisted only of the deposited
element; between it and the substrate there was a transition layer (containing elements of
both the substrate and the deposited substance), which was also enriched with oxygen.
Depending on the deposition parameters of several successive layers, regularities were
obtained identical to those of the single layer’s formation, and transition zones were
also observed between the layers of deposited metals (Figure 1). Even when using a
titanium alloy substrate, regions of layer-by-layer deposition of titanium (without other
alloy elements) and tantalum can be noted on the results of the energy-dispersive analysis
of a multilayer composite material (Figure 2).

The generation of the transition layer can be considered as a result of magnetron
sputtering, when sputtered particles both condense on the substrate surface, and ap-
proach it with some additional energy, and their contact leads to a number of particle
interactions [60,61]: “driving in” of sputtered atoms and ions, their “knocking out” (inter-
action can be elastic and inelastic, with or without energy transfer) and re-deposition or,
conversely, the surface particles penetration (both the substrate and previously deposited
sputtered elements) into the substrate subsurface structure, the formation of radiation
defects stimulated mutual diffusion of the substrate elements and of the deposited layer
atoms at their interface, etc. This means that the particles brought into the mobilized state
(the deposited substance and the area of the substrate surface), repeatedly colliding and
chaotically moving on the substrate surface or near it, are constantly mixed. Ultimately, the
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surface area is so saturated with the sprayed substance that its interaction with new flows
of atoms and ions leads to the formation of a pure surface layer of the composite.
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The relief of the newly formed surface repeats the surface morphology of the substrate,
regardless of the deposition conditions. When applying tantalum to the titanium sublayer,
an additional roughness smoothing of the surface is observed (Figure 3). However, at
short distances, dotty deepening surface microdefects appear (Figure 4), resembling ion
implantation [62], which correlate with a higher flow of spray substance reaching the
surface of the substrate compared with longer distances.
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Figure 4. Morphology of the Ta-TiNbZr composite material created in 20 min at a distance of 40 mm.

With an increase in the distance, other conditions being equal, on the one hand, the
thickness of the deposited zones diminishes (Figure 5), since more of the sprayed substance
diverge to the sides from the main sputtering axis without hitting the substrate; on the other
hand, the transition zone thickness rises, which may be due to the higher flux density of the
sprayed material particles at a smaller distances, faster and evenly settling on the interface
and less penetrating into the base material. The summary layers thickness practically does
not change at a distance of 80–150 mm and decreases at a greater distance. As the existence
of a significant transition zone is a presumed cause for high adhesion of the newly deposited
surface to the base material, and this surface must be adapted to the mechanical behavior
of the substrate, and taking into account surface microdefects at short length between the
substrate and the sputtered target, distances within 100–150 mm are more optimal.
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With increasing deposition time an almost linear growth in the thickness of both the
surface and transition layers is observed, and the transition zone formed approximately
2 times slower than the surface one. For example (Figure 6), under conditions of 865 mA
and 400 V, deposition distance of 200 mm, the growth rate the tantalum surface layer was
about 28 nm per minute, and the transition layer was about 15 nm per minute. However,
there was a significant difference in that the transition zone stopped growing after about
300 nm, and it can be assumed that the transition layer is saturated. Thus, at a deposition
time of 30 minutes, the maximum possible transition layer (0.3 µm) and a surface layer of
about 0.9 µm were formed under the given conditions, which correspond to the previously
selected optimal conditions when changing the distance. The pattern was preserved under
all conditions and materials used.
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distance of 200 mm.

At the beginning of the formation of the new surface zone, the particles of the deposited
substance, overcoming the spraying distance, colliding with working gas atoms and ions,
with each other and with the new surface of the substrate, do not end up in each surface
section at the same time and at first interact with it randomly and irregularly Thereafter
(with an increase in the spraying time, and hence the time of exposure to the surface),
the particles kept colliding and mixing, trying to take an energetically more favorable
state and position, leading to a more uniform distribution of the precipitated substance on
the surface. The selected value of the operating pressure for the surface layer deposition
of ≈ 0.4 Pa, according to the literature data, promotes the formation of strong films of
a crystalline structure with low surface roughness and high density [55,58,59,63]. The
continuous interaction of the mobilized particles of the target and the substrate contributes
to the fact that, when the layer thickness reached 300 nm in this work, the islands were
already smoothed out.

The total thickness value of the surface and transition layers increased almost linearly
with increasing deposition power. Thus, when titanium was deposited on any substrate at
the deposition distance 150 mm, for 30 min, in the deposition power range of 0–350 W, the
average increase in the thickness of the surface layer was 2.61 nm/W, and the transition
layer was 0.725 nm/W (Figure 7). An increase in their thickness may be associated with
an increased target sputtering rate. The effect of a further increase in power (up to 500 W)
was slightly less, which may be caused by the compaction of the near-surface zone and the
reduction in the time for transition layer creation with an increase in the deposited material
flux density and energy, but at the same time, the target consumption of the target and the
possibility of contamination of the composite surface increased, including by-elements of
the stainless steel vacuum chamber walls, which can be etched by high-energy particles;
it is also possible to spray the newly formed surface with high-energy particles of the
deposited flow.
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It was noted that with equal sputtering–deposition parameters, the layer growth rates
for tantalum and titanium are the same. For example, this is shown in Figure 1, where
tantalum and titanium layers obtained with the same parameters are identical in thickness,
which is in good agreement with the literature data, for example, with ref. [44].

With the simultaneous deposition of tantalum and titanium, composite materials
"oxy nitride layer (the area at the very boundary of the solid body with the surrounding
gaseous medium, free from substrate elements, where the content of titanium or tantalum
is not at a maximum, about 10 nm thick)—a surface layer of tantalum with titanium–a
transition layer containing elements of the surface and the base–the base" were obtained
(Figures 8–10). The general regularity of the change in the in composition with depth of the
obtained composites is approximately the same. Depending on the deposition parameters,
regularities were obtained identical to the regularities of the formation of single layers of
individual elements.
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Figure 10. Layered composition of the surface of a composite material with a tantalum–titanium
surface layer, created in 30 min at 400 V and 865 mA with a distance of 150 mm, on an
aluminum substrate.

The results of element mapping in a transverse section (Figures 11–13) are in good
agreement with the layer-by-layer analysis of the chemical composition of the surface. The
surface layer of the mixed composition clearly stands out on the substrate of both foreign
material (aluminum) and titanium alloy. When mapping surface elements, a uniform
distribution of deposited metals without the formation of clusters can be noted, and a
visual decrease in the contribution of the substrate can be seen when the layer thickness
increased from 0.4 to 0.9 µm (Figures 14–16).
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In the case of X-ray phase analysis of a titanium surface layer, regardless of its thick-
ness, production parameters and the nature of the underlying substrate, only the beta
phase (cubic crystal lattice) is observed, and this composition was not identical to the cast
sputtered target phase composition (alpha). An example is shown in the Figure 17, the
main peaks correspond to the phases: Ti—Im-3m: 39◦26′, 83◦31′; B-19 NiTi—21/m(11):
21◦46′, 36◦18′, 39◦26′, 40◦45′, 43◦8′, 44◦17′, 45◦8′, 46◦51′, 56◦43′, 83◦31′; R NiTi—P-3(147):
39◦26′, 44◦34′, 45◦8′, 46◦51′, 78◦9′, 79◦46′, 93◦36′.
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When creating thin tantalum films and layers, as noted in the literature, its formation
in both beta and alpha states is possible [51–59,63–73]. At the same time, several theories
have been developed for the formation of tantalum in one or another phase state, mainly
related to temperature and pressure (which determine the motility and energy of atoms)
and the substrate composition and surface condition. However, different authors often
come to conflicting results.

According to our previous studies [74,75], regardless of the deposition conditions, the
beta phase of tantalum is first formed, and alpha-tantalum is deposited on it (which is
presumably due to the oxygen presence in the surface of all substrates), as in ref. [56], where,
however, this was associated with a significant heating of the surface (more than 350 ◦C).

It was observed that tantalum in alpha state is created at temperature above 400 ◦C,
which contributes to an increase in the mobility of the deposited atoms: either during
initially heating of the substrate or annealing following deposition (when the obtained
beta phase turns into alpha Ta) [56,63,67]. However, at the temperature range from 400
to 500 ◦C the beta tantalum was also obtained [63,67], while α was formed even without
heating [54,57]. It was indicated that with increasing temperature, the grain size, the
amount of surface layer impurities, and its amorphism decrease.

A high oxygen content in the working atmosphere in [58] leads to the rapid creation
of oxides causing the creation of a beta tantalum layer, while in ref. [57] the oxygen
environment did not interfere with the creation tantalum alpha phase. When deposited on
glass and silicon substrates, a pressure of 0.5 ± 0.7 Pa in Refs [55,58,59] led to the formation
of α-Ta and at lower or higher pressure, β-Ta; however, in ref. [57], the α phase was already
formed at 0.28 Pa, and in [59], the alpha tantalum creation also occurred at pressures of
0.3 and 1.4 Pa.

Being the zone of nucleation of a new surface, the base substrate surface determines the
new structure creation nature. It has been noted that beta tantalum is formed on amorphous
surfaces containing carbon or oxygen (the inartificial state of glass or titanium and alu-
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minum in an oxygen atmosphere), whereas, for example, on titanium without natural oxide,
on previously deposited α-Ta or TaN alpha tantalum is formed [52,54,56,59]. Additionally,
it was pointed out that (110) phase is the lowest energy lattice for bcc materials and causes
the formation of the same structure on itself, and α-Ta (110) is the thermodynamically most
stable phase.

In an oxygen-free environment, beta and alpha titanium formed, respectively, and on
glass and silicon, α-Ta formed [54]. Beta titanium and alpha tantalum have a similar type of
crystal lattice (110); the α-Ti lattice parameters match with the parameters of the hexagonal
lattice composed of atoms of the nearest α-Ta planes. In these two cases, titanium grains can
serve as the nucleation core for Ta crystallites. The amorphous oxide layer differs too much
in structure from the α-Ta crystal lattice and this difference leads to the formation of β-Ta.

Thus, in this work, we expected to see a modification of tantalum.
In this work, if a Ta surface layer deposited on titanium, after prolonged ion etching

(i.e. without an oxygen-containing surface) and without it, a lot of alpha and beta tantalum
peaks are recorded, which corresponds to different crystal orientations: beta (002, 410,
202, 004, 513, 333, 404, etc.), alpha (110, 211, and 220), i.e., a strongly textured structure is
formed, regardless of the substrate surface. Example is shown in Figure 18, the main peaks
correspond to the phases: Ti-beta, Im-3m: 38◦28′, 69◦55′, 121◦22′; Ta-alpha, Im-3m: 38◦28′,
69◦55′, 121◦22′; Ta- beta, hP2/1: 33◦42′, 69◦55′, 121◦22′; Ta-beta, tP30/17: 33◦42′, 38◦28′,
69◦55′, 121◦22′).
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Figure 18. X-ray patterns of samples of a multilayer composite material with tantalum on titanium
surface layers created in 30 min, at 400 V and 865 mA with a distance of 250 mm, on a glass substrate.

X-ray phase studies suggest that even at small thicknesses of the surface layer, the
co-deposition of tantalum and titanium contributes to the formation of a single tantalum
phase, alpha. In Figure 19 the main peak on the X-ray corresponds to the substrate due to
averaging over the entire depth of analysis, corresponding to a mixture of alpha titanium
(hexagonal lattice) and beta, the surface peaks correspond to the TiTa (cubic), beta Ti (cubic,
typical for magnetron deposition according to previous studies) and alpha Ta (cubic) (i.e.,
the main angles in the figure correspond to Ti-alpha, P63-mmc: 35◦6′, 38◦32′, 40◦8′, 53◦,
63◦40′, 70◦32′, 76◦34′, 82◦36′, Ta-alpha, Im-3m: 38◦32′, 56◦24′, 70◦32′, 82◦36′, 96◦34′, TiTa,
Im-3m: 35◦6′, 36◦16′, 38◦32′, 56◦24′, 70◦32′, 82◦36′, 96◦34′, Ti-beta, Im-3m: 38◦32′, 56◦24′,
70◦32′, 82◦36′, 96◦34′), while, as previously discussed, beta-Ti and alpha-Ta have a similar
type of crystal lattice (110), and the parameters of the alpha-Ti lattice coincide with the



Coatings 2023, 13, 114 14 of 18

parameters of the hexagonal lattice composed of atoms of the nearest alpha-Ta planes,
which determine the only possible option for the development of tantalum crystallite. If
the deposition occurs on a substrate of a different nature (Figure 20, on aluminum), we
also observe the main peak from the substrate, and, on the surface, a mixture of alpha
tantalum, beta titanium and TiTa (the main angles correspond to Al, Fm-3m: 38◦28′, 44◦38′,
65◦12′, 78◦, TiTa, Im-3m: 38◦28′, 56◦6′, 70◦, 82◦34′, 96◦19′, Ta-alpha, Im-3m: 38◦28′, 56◦6′,
70◦, 82◦34′, 96◦19′, and Ti-beta, Im-3m: 38◦28′, 56◦6′, 70◦, 82◦34′, 96◦19′).
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Figure 20. Al sample after magnetron sputtering of a Ta–Ti target created in 30 min, at 400 V and
865 mA with a distance of 250 mm.

Carrying out irradiation of the substrate surface with argon ions before layer de-
position not only to cleaning the surface from impurities, but also to fine polishing and
activation of this surface, which ensures the formation of a stable transition layer.

The results of studying the mechanical properties of composites with titanium and
tantalum–titanium surface layers and a titanium alloy base are shown in Table 1.
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Table 1. Mechanical properties of Ti-Nb-Zr wire after surface treatment and composite material based
on it.

No. Sample Rel. ext. Yield Strength (MPa) Tensile
Strength (MPa) Load (kgf) Young’s

Modulus (GPa)

1 Ti-Nb-Zr 3.05 583.68 671.58 44.58 27.571
2 Ti-Nb-Zr–Ti, 30 min 3.21 419.79 579.43 47.19 25.675
3 Ti-Nb-Zr–Ti–Ta, 30 min 3.65 448.75 619.67 45.42 23.278
4 Ti-Nb-Zr–Ta/Ti, 30 min 3.67 451.24 618.72 47.12 22.589

Based on the data obtained, it can be concluded that the elongation increases as the
surface layers are deposited and thickened by the magnetron deposition method, while the
strength and Young’s modulus decrease slightly, and the additional deposition of tantalum
increases all indicators.

4. Conclusions

The patterns of formation of layered composite materials with a surface metal layer
of a bicomponent composition (Ta/Ti) using a complex vacuum technology, including
magnetron sputtering, with varying process conditions, including options for supplying
elemental fluxes (in series and in parallel, from one source when using a target of mixed
composition) were studied.

An almost linear increase in the thickness of both the surface and transition layers was
observed with increasing deposition time, and the transition zone was formed approxi-
mately two times slower than the surface one and stopped growing after reaching about
300 nm. The total thickness of the surface and transition layers increased almost linearly
with increasing power, but after some power critical value the growth rate decreased. With
equal sputtering–deposition parameters, the layer growth rates for tantalum and titanium
were the same.

In the case of a sample with a Ta surface layer deposited on titanium, a strongly
textured mixture of alpha and beta phases was observed, which was insignificantly related
to the initial structure of the substrate and the underlying layer. However, even at small
thicknesses of the surface layer, the joint deposition of tantalum and titanium contributed
to the formation of a single tantalum phase, alpha.

The elongation increased as the surface layers were deposited and thickened, while
the strength and Young’s modulus decreased slightly, and the additional deposition of
tantalum on titanium improved everything.

The results of the works carried out using vacuum technologies and modern methods
for studying materials have prospects for use in various fields of science and technology
(medicine, electronics, optics, structural materials, etc.).
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