Insight on Corrosion Prevention of C1018 in 1.0 M Hydrochloric Acid Using Liquid Smoke of Rice Husk Ash: Electrochemical, Surface Analysis, and Deep Learning Studies
Abstract
:1. Introduction
2. Related Work
3. Materials and Methods
3.1. Preparation of Working Electrode
3.2. Preparation of Inhibitor and Test Solution
3.3. Electrochemical Method
3.4. UV-Vis and FTIR Analysis
3.5. Surface Analysis
3.6. Deep Learning Studies
3.7. Diameter Particle Measurements
4. Results and Discussion
4.1. Anti-Corrosion Behavior of Liquid Smoke Inhibitor
4.2. Electrochemical Impedance Spectroscopy Results
4.3. UV-Vis and FTIR Results
4.3.1. UV-Vis Results
4.3.2. FTIR Results
4.4. Surface Analysis Studies
4.5. Deep Learning and Particle Size Studies
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, H.; Gu, T.; Zhang, G.; Wang, W.; Dong, S.; Cheng, Y.; Liu, H. Corrosion inhibition of carbon steel in CO2-containing oilfield produced water in the presence of iron-oxidizing bacteria and inhibitors. Corros. Sci. 2016, 105, 149–160. [Google Scholar] [CrossRef]
- Murthy, R.; Gupta, P.; Sundaresan, C. Theoretical and electrochemical evaluation of 2-thioureidobenzheteroazoles as potent corrosion inhibitors for mild steel in 2 M HCl solution. J. Mol. Liq. 2020, 319, 114081. [Google Scholar] [CrossRef]
- Verma, C.; Ebenso, E.E.; Quraishi, M. Corrosion inhibitors for ferrous and non-ferrous metals and alloys in ionic sodium chloride solutions: A review. J. Mol. Liq. 2017, 248, 927–942. [Google Scholar] [CrossRef]
- Sherif, E.-S.M.; Erasmus, R.; Comins, J. Inhibition of copper corrosion in acidic chloride pickling solutions by 5-(3-aminophenyl)-tetrazole as a corrosion inhibitor. Corros. Sci. 2008, 50, 3439–3445. [Google Scholar] [CrossRef]
- Mehta, R.K.; Gupta, S.K.; Yadav, M. Studies on pyrimidine derivative as green corrosion inhibitor in acidic environment: Electrochemical and computational approach. J. Environ. Chem. Eng. 2022, 10, 108499. [Google Scholar] [CrossRef]
- Lgaz, H. Corrosion Inhibition Behavior of 9-Hydroxyrisperidone as a Green Corrosion Inhibitor for Mild Steel in Hydrochloric Acid: Electrochemical, DFT and MD Simulations Studies. Int. J. Electrochem. Sci. 2018, 13, 250–264. [Google Scholar] [CrossRef]
- Riastuti, R.; Setiawidiani, D.; Soedarsono, J.W.; Aribowo, S.; Kaban, A.P.S. Development of saga (Abrus precatorius) seed extract as a green corrosion inhibitor in API 5l Grade B under 1m HCL solutions. East. Eur. J. Enterp. Technol. 2022, 4, 46–56. [Google Scholar] [CrossRef]
- Azmi, M.F.; Soedarsono, J.W. Study of corrosion resistrance of pipeline API 5L X42 using green inhibitor bawang dayak (Eleutherine americanna Merr.) in 1M HCl. IOP Conf. Series Earth Environ. Sci. 2018, 105, 012061. [Google Scholar] [CrossRef]
- Alvarez, P.E.; Fiori-Bimbi, M.V.; Neske, A.; Brandán, S.A.; Gervasi, C.A. Rollinia occidentalis extract as green corrosion inhibitor for carbon steel in HCl solution. J. Ind. Eng. Chem. 2018, 58, 92–99. [Google Scholar] [CrossRef]
- Soedarsono, J.W.; Shihab, M.N.; Azmi, M.F.; Maksum, A. Study of curcuma xanthorrhiza extract as green inhibitor for API 5L X42 steel in 1M HCl solution. IOP Conf. Series Earth Environ. Sci. 2018, 105, 012060. [Google Scholar] [CrossRef]
- Subekti, N.; Soedarsono, J.W.; Riastuti, R.; Sianipar, F.D. Development of environmental friendly corrosion inhibitor from the extract of areca flower for mild steel in acidic media. East. Eur. J. Enterp. Technol. 2020, 2, 34–45. [Google Scholar] [CrossRef]
- Roberge, P. Corrosion Engineering: Principles and Practice; McGraw-Hill: New York, NY, USA, 2008. [Google Scholar]
- He, S.; Chen, G.; Xiao, H.; Shi, G.; Ruan, C.; Ma, Y.; Dai, H.; Yuan, B.; Chen, X.; Yang, X. Facile preparation of N-doped activated carbon produced from rice husk for CO2 capture. J. Colloid Interface Sci. 2020, 582, 90–101. [Google Scholar] [CrossRef]
- Afjeh, M.S.; Marandi, G.B.; Zohuriaan-Mehr, M.J. Nitrate removal from aqueous solutions by adsorption onto hydrogel-rice husk biochar composite. Water Environ. Res. 2019, 92, 934–947. [Google Scholar] [CrossRef]
- Kaban, A.; Mayangsari, W.; Anwar, M.; Maksum, A.; Aditiyawarman, T.; Soedarsono, J.; Ridhova, A.; Riastuti, R. Unraveling the study of liquid smoke from rice husks as a green corrosion inhibitor in mild steel under 1 M HCl. East. Eur. J. Enterp. Technol. 2022, 5, 41–53. [Google Scholar] [CrossRef]
- Simon, R.; De La Calle, B.; Palme, S.; Meier, D.; Anklam, E. Composition and analysis of liquid smoke flavouring primary products. J. Sep. Sci. 2005, 28, 871–882. [Google Scholar] [CrossRef]
- Kailaku, S.; Syakir, M.; Mulyawanti, I.; Syah, A. Antimicrobial activity of coconut shell liquid smoke. IOP Conf. Series Mater. Sci. Eng. 2017, 206, 12050. [Google Scholar] [CrossRef] [Green Version]
- Forkan, A.R.M.; Kang, Y.-B.; Jayaraman, P.P.; Liao, K.; Kaul, R.; Morgan, G.; Ranjan, R.; Sinha, S. CorrDetector: A framework for structural corrosion detection from drone images using ensemble deep learning. Expert Syst. Appl. 2022, 193, 116461. [Google Scholar] [CrossRef]
- Aditiyawarman, T.; Soedarsono, J.W.; Kaban, A.P.S.; Riastuti, R.; Rahmadani, H. The Study of Artificial Intelligent in Risk-Based Inspection Assessment and Screening: A Study Case of Inline Inspection. ASCE-ASME J. Risk Uncert. Engrg. Sys. Part B Mech. Engrg. 2022, 9, 011204. [Google Scholar] [CrossRef]
- Xie, T.; Ghiaasiaan, S.; Karrila, S. Artificial neural network approach for flow regime classification in gas–liquid–fiber flows based on frequency domain analysis of pressure signals. Chem. Eng. Sci. 2004, 59, 2241–2251. [Google Scholar] [CrossRef]
- Karpatne, A.; Atluri, G.; Faghmous, J.H.; Steinbach, M.; Banerjee, A.; Ganguly, A.; Shekhar, S.; Samatova, N.; Kumar, V. Theory-Guided Data Science: A New Paradigm for Scientific Discovery from Data. IEEE Trans. Knowl. Data Eng. 2017, 29, 2318–2331. [Google Scholar] [CrossRef]
- Xu, J.; Jia, R.; Yang, D.; Sun, C.; Gu, T. Effects of d-Phenylalanine as a biocide enhancer of THPS against the microbiologically influenced corrosion of C1018 carbon steel. J. Mater. Sci. Technol. 2018, 35, 109–117. [Google Scholar] [CrossRef]
- Xu, D.; Gu, T. Carbon source starvation triggered more aggressive corrosion against carbon steel by the Desulfovibrio vulgaris biofilm. Int. Biodeterior. Biodegrad. 2014, 91, 74–81. [Google Scholar] [CrossRef]
- El-Lateef, H.M.A.; Shalabi, K.; Abdelhamid, A.A. One-pot synthesis of novel triphenyl hexyl imidazole derivatives catalyzed by ionic liquid for acid corrosion inhibition of C1018 steel: Experimental and computational perspectives. J. Mol. Liq. 2021, 334, 116081. [Google Scholar] [CrossRef]
- Pourabdollah, K. Matrix acidizing: A fouling mitigation process in oil and gas wells. Rev. Chem. Eng. 2018, 36, 311–331. [Google Scholar] [CrossRef]
- Jia, R.; Yang, D.; Xu, J.; Xu, D.; Gu, T. Microbiologically influenced corrosion of C1018 carbon steel by nitrate reducing Pseudomonas aeruginosa biofilm under organic carbon starvation. Corros. Sci. 2017, 127, 1–9. [Google Scholar] [CrossRef]
- Rasheeda, K.; Alamri, A.H.; Krishnaprasad, P.; Swathi, N.P.; Alva, V.D.; Aljohani, T.A. Efficiency of a pyrimidine derivative for the corrosion inhibition of C1018 carbon steel in aqueous acidic medium: Experimental and theoretical approach. Colloids Surf. A Physicochem. Eng. Asp. 2022, 642, 128631. [Google Scholar] [CrossRef]
- Alamri, A. Experimental and Theoretical Insights into the Synergistic Effect of Iodide Ions and 1-Acetyl-3-Thiosemicarbazide on the Corrosion Protection of C1018 Carbon Steel in 1 M HCl. Materials 2020, 13, 5013. [Google Scholar] [CrossRef]
- Kaban, A.P.S.; Mayangsari, W.; Anwar, M.S.; Maksum, A.; Riastuti, R.; Aditiyawarman, T.; Soedarsono, J.W. Experimental and modelling waste rice husk ash as a novel green corrosion inhibitor under acidic environment. Mater. Today Proc. 2022, 62, 4225–4234. [Google Scholar] [CrossRef]
- Abbas, M.H.; Norman, R.; Charles, A. Neural network modelling of high pressure CO2 corrosion in pipeline steels. Process. Saf. Environ. Prot. 2018, 119, 36–45. [Google Scholar] [CrossRef] [Green Version]
- ASTM G5 Standard Reference Test Method for Making Potentiodynamic Anodic Polarization Measurements, Annual Book of ASTM Standards; ASTM International: West Conshohocken, PA, USA, 2014; Volume 14.
- Berrissoul, A.; Ouarhach, A.; Benhiba, F.; Romane, A.; Guenbour, A.; Outada, H.; Dafali, A.; Zarrouk, A. Exploitation of a new green inhibitor against mild steel corrosion in HCl: Experimental, DFT and MD simulation approach. J. Mol. Liq. 2021, 349, 118102. [Google Scholar] [CrossRef]
- Nwankwo, H.U.; Olasunkanmi, L.O.; Ebenso, E.E. Experimental, quantum chemical and molecular dynamic simulations studies on the corrosion inhibition of mild steel by some carbazole derivatives. Sci. Rep. 2017, 7, 2436. [Google Scholar] [CrossRef]
- Pejić, J.N.; Jegdić, B.V.; Radojković, B.M.; Marunkić, D.D.; Marinković, A.D.; Bajat, J.B. Cysteine and cerium as green corrosion inhibitors for AA7049: Mixture vs. complexation. Corros. Sci. 2022, 209, 110815. [Google Scholar] [CrossRef]
- Chauhan, D.S.; Quraishi, M.; Srivastava, V.; Haque, J.; El Ibrahimi, B. Virgin and chemically functionalized amino acids as green corrosion inhibitors: Influence of molecular structure through experimental and in silico studies. J. Mol. Struct. 2020, 1226, 129259. [Google Scholar] [CrossRef]
- Shao, H.; Yin, X.; Zhang, K.; Yang, W.; Chen, Y.; Liu, Y. N-[2-(3-indolyl)ethyl]-cinnamamide synthesized from cinnamomum cassia presl and alkaloid tryptamine as green corrosion inhibitor for Q235 steel in acidic medium. J. Mater. Res. Technol. 2022, 20, 916–933. [Google Scholar] [CrossRef]
- Cherrak, K.; El Massaoudi, M.; Outada, H.; Taleb, M.; Lgaz, H.; Zarrouk, A.; Radi, S.; Dafali, A. Electrochemical and theoretical performance of new synthetized pyrazole derivatives as promising corrosion inhibitors for mild steel in acid environment: Molecular structure effect on efficiency. J. Mol. Liq. 2021, 342, 117507. [Google Scholar] [CrossRef]
- El Faydy, M.; Lakhrissi, B.; Jama, C.; Zarrouk, A.; Olasunkanmi, L.O.; Ebenso, E.E.; Bentiss, F. Electrochemical, surface and computational studies on the inhibition performance of some newly synthesized 8-hydroxyquinoline derivatives containing benzimidazole moiety against the corrosion of carbon steel in phosphoric acid environment. J. Mater. Res. Technol. 2019, 9, 727–748. [Google Scholar] [CrossRef]
- Yan, T.; Zhang, S.; Feng, L.; Qiang, Y.; Lu, L.; Fu, D.; Wen, Y.; Chen, J.; Li, W.; Tan, B. Investigation of imidazole derivatives as corrosion inhibitors of copper in sulfuric acid: Combination of experimental and theoretical researches. J. Taiwan Inst. Chem. Eng. 2019, 106, 118–129. [Google Scholar] [CrossRef]
- Vashishth, P.; Bairagi, H.; Narang, R.; Shukla, S.K.; Mangla, B. Thermodynamic and Electrochemical investigation of Inhibition Efficiency of Green Corrosion Inhibitor and its comparison with Synthetic Dyes on MS in Acidic Medium. J. Mol. Liq. 2022, 365, 120042. [Google Scholar] [CrossRef]
- Khamseh, S.; Alibakhshi, E.; Mahdavian, M.; Saeb, M.R.; Vahabi, H.; Lecomte, J.-S.; Laheurte, P. High-performance hybrid coatings based on diamond-like carbon and copper for carbon steel protection. Diam. Relat. Mater. 2017, 80, 84–92. [Google Scholar] [CrossRef]
- Umoren, S.A.; Gasem, Z.M.; Obot, I.B. Natural Products for Material Protection: Inhibition of Mild Steel Corrosion by Date Palm Seed Extracts in Acidic Media. Ind. Eng. Chem. Res. 2013, 52, 14855–14865. [Google Scholar] [CrossRef]
- Wang, X.; Jiang, H.; Zhang, D.X.; Hou, L.; Zhou, W.J. Solanum lasiocarpum L. Extract as Green Corrosion Inhibitor for A3 Steel in 1 M HCl Solution. Int. J. Electrochem. Sci. 2019, 14, 1178–1196. [Google Scholar] [CrossRef] [PubMed]
- Ouici, H.; Tourabi, M.; Benali, O.; Selles, C.; Jama, C.; Zarrouk, A.; Bentiss, F. Adsorption and corrosion inhibition properties of 5-amino 1,3,4-thiadiazole-2-thiol on the mild steel in hydrochloric acid medium: Thermodynamic, surface and electrochemical studies. J. Electroanal. Chem. 2017, 803, 125–134. [Google Scholar] [CrossRef]
- Caldona, E.B.; Zhang, M.; Liang, G.; Hollis, T.K.; Webster, C.E.; Smith, D.W.; Wipf, D.O. Corrosion inhibition of mild steel in acidic medium by simple azole-based aromatic compounds. J. Electroanal. Chem. 2020, 880, 114858. [Google Scholar] [CrossRef]
- Berdimurodov, E.; Kholikov, A.; Akbarov, K.; Guo, L.; Kaya, S.; Verma, D.K.; Rbaa, M.; Dagdag, O. Novel glycoluril pharmaceutically active compound as a green corrosion inhibitor for the oil and gas industry. J. Electroanal. Chem. 2022, 907, 116055. [Google Scholar] [CrossRef]
- El Faydy, M.; Benhiba, F.; Berisha, A.; Kerroum, Y.; Jama, C.; Lakhrissi, B.; Guenbour, A.; Warad, I.; Zarrouk, A. An experimental-coupled empirical investigation on the corrosion inhibitory action of 7-alkyl-8-Hydroxyquinolines on C35E steel in HCl electrolyte. J. Mol. Liq. 2020, 317, 113973. [Google Scholar] [CrossRef]
- Marunkić, D.; Pejić, J.; Jegdić, B.; Linić, S.; Perišić, J.; Radojković, B.; Marinković, A. Inhibitory Effect of Cerium Salts of Lower Carboxylic Acids on Al-Zn-Mg-Cu Alloy in NaCl Solution. J. Electrochem. Soc. 2021, 168, 081501. [Google Scholar] [CrossRef]
- Hill, J.-A.; Markley, T.; Forsyth, M.; Howlett, P.C.; Hinton, B.R. Corrosion inhibition of 7000 series aluminium alloys with cerium diphenyl phosphate. J. Alloy. Compd. 2011, 509, 1683–1690. [Google Scholar] [CrossRef]
- Hien, P.; Vu, N.; Thu, V.; Somers, A.; Nam, N. Study of yttrium 4-nitrocinnamate to promote surface interactions with AS1020 steel. Appl. Surf. Sci. 2017, 412, 464–474. [Google Scholar] [CrossRef]
- Mashuga, M.E.; Olasunkanmi, L.O.; Verma, C.; Sherif, E.-S.M.; Ebenso, E.E. Experimental and computational mediated illustration of effect of different substituents on adsorption tendency of phthalazinone derivatives on mild steel surface in acidic medium. J. Mol. Liq. 2020, 305, 112844. [Google Scholar] [CrossRef]
- Bentiss, F.; Jama, C.; Mernari, B.; El Attari, H.; El Kadi, L.; Lebrini, M.; Traisnel, M.; Lagrenée, M. Corrosion control of mild steel using 3,5-bis(4-methoxyphenyl)-4-amino-1,2,4-triazole in normal hydrochloric acid medium. Corros. Sci. 2009, 51, 1628–1635. [Google Scholar] [CrossRef]
- Alrefaee, S.H.; Rhee, K.Y.; Verma, C.; Quraishi, M.; Ebenso, E.E. Challenges and advantages of using plant extract as inhibitors in modern corrosion inhibition systems: Recent advancements. J. Mol. Liq. 2020, 321, 114666. [Google Scholar] [CrossRef]
- Zhao, Q.; Guo, J.; Cui, G.; Han, T.; Wu, Y. Chitosan derivatives as green corrosion inhibitors for P110 steel in a carbon dioxide environment. Colloids Surf. B Biointerfaces 2020, 194, 111150. [Google Scholar] [CrossRef]
- Yadav, D.K.; Chauhan, D.; Ahamad, I.; Quraishi, M. Electrochemical behavior of steel/acid interface: Adsorption and inhibition effect of oligomeric aniline. RSC Adv. 2012, 3, 632–646. [Google Scholar] [CrossRef]
- Growcock, F.B.; Jasinski, R.J. Time-Resolved Impedance Spectroscopy of Mild Steel in Concentrated Hydrochloric Acid. J. Electrochem. Soc. 1989, 136, 2310–2314. [Google Scholar] [CrossRef]
- Popova, A.; Christov, M.; Vasilev, A. Mono- and dicationic benzothiazolic quaternary ammonium bromides as mild steel corrosion inhibitors. Part II: Electrochemical impedance and polarisation resistance results. Corros. Sci. 2011, 53, 1770–1777. [Google Scholar] [CrossRef]
- Majd, M.T.; Asaldoust, S.; Bahlakeh, G.; Ramezanzadeh, B.; Ramezanzadeh, M. Green method of carbon steel effective corrosion mitigation in 1 M HCl medium protected by Primula vulgaris flower aqueous extract via experimental, atomic-level MC/MD simulation and electronic-level DFT theoretical elucidation. J. Mol. Liq. 2019, 284, 658–674. [Google Scholar] [CrossRef]
- Abrishami, S.; Naderi, R.; Ramezanzadeh, B. Fabrication and characterization of zinc acetylacetonate/Urtica Dioica leaves extract complex as an effective organic/inorganic hybrid corrosion inhibitive pigment for mild steel protection in chloride solution. Appl. Surf. Sci. 2018, 457, 487–496. [Google Scholar] [CrossRef]
- Tan, B.; Xiang, B.; Zhang, S.; Qiang, Y.; Xu, L.; Chen, S.; He, J. Papaya leaves extract as a novel eco-friendly corrosion inhibitor for Cu in H2SO4 medium. J. Colloid Interface Sci. 2020, 582, 918–931. [Google Scholar] [CrossRef]
- Srivastava, V.; Salman, M.; Chauhan, D.S.; Abdel-Azeim, S.; Quraishi, M. (E)-2-styryl-1H-benzo[d]imidazole as novel green corrosion inhibitor for carbon steel: Experimental and computational approach. J. Mol. Liq. 2021, 324, 118–123. [Google Scholar] [CrossRef]
- Li, X.-H.; Deng, S.-D.; Fu, H. Inhibition by Jasminum nudiflorum Lindl. leaves extract of the corrosion of cold rolled steel in hydrochloric acid solution. J. Appl. Electrochem. 2010, 40, 1641–1649. [Google Scholar] [CrossRef]
- Li, X.-H.; Deng, S.-D.; Fu, H.; Mu, G.-N. Inhibition by tween-85 of the corrosion of cold rolled steel in 1.0 M hydrochloric acid solution. J. Appl. Electrochem. 2009, 39, 1125–1135. [Google Scholar] [CrossRef]
- Nwankwo, H.U.; Olasunkanmi, L.O.; Ebenso, E.E. Electrochemical and Computational Studies of Some Carbazole Derivatives as Inhibitors of Mild Steel Corrosion in Abiotic and Biotic Environments. J. Bio Tribo-Corrosion 2018, 4, 13. [Google Scholar] [CrossRef]
- Lin, C.-F.; Tseng, W.-T.; Feng, M.S. Formation and characteristics of silicon nanocrystals in plasma-enhanced chemical-vapor-deposited silicon-rich oxide. J. Appl. Phys. 2000, 87, 2808–2815. [Google Scholar] [CrossRef]
- Chen, B.; Wang, X.; Zhang, Q.; Xi, X.; Cai, J.; Qi, H.; Shi, S.; Wang, J.; Yuan, D.; Fang, M. Synthesis and characterization of the interpenetrated MOF-5. J. Mater. Chem. 2010, 20, 3758–3767. [Google Scholar] [CrossRef]
- Zhao, Y.; Xu, J.-B.; Zhan, J.; Chen, Y.-Q.; Hu, J.-M. Electrodeposited superhydrophobic mesoporous silica films co-embedded with template and corrosion inhibitor for active corrosion protection. Appl. Surf. Sci. 2020, 508, 145242. [Google Scholar] [CrossRef]
- Nezhad, A.N.; Davoodi, A.; Zahrani, E.M.; Arefinia, R. The effects of an inorganic corrosion inhibitor on the electrochemical behavior of superhydrophobic micro-nano structured Ni films in 3.5% NaCl solution. Surf. Coatings Technol. 2020, 395, 125946. [Google Scholar] [CrossRef]
- El Azzouzi, M.; Azzaoui, K.; Warad, I.; Hammouti, B.; Shityakov, S.; Sabbahi, R.; Saoiabi, S.; Youssoufi, M.; Akartasse, N.; Jodeh, S.; et al. Moroccan, Mauritania, and senegalese gum Arabic variants as green corrosion inhibitors for mild steel in HCl: Weight loss, electrochemical, AFM and XPS studies. J. Mol. Liq. 2021, 347, 118354. [Google Scholar] [CrossRef]
- El Faydy, M.; Galai, M.; El Assyry, A.; Tazouti, A.; Touir, R.; Lakhrissi, B.; Touhami, M.E.; Zarrouk, A. Experimental investigation on the corrosion inhibition of carbon steel by 5-(chloromethyl)-8-quinolinol hydrochloride in hydrochloric acid solution. J. Mol. Liq. 2016, 219, 396–404. [Google Scholar] [CrossRef]
- Taheri, S.; Brodie, G.; Gupta, D. Optimised ANN and SVR models for online prediction of moisture content and temperature of lentil seeds in a microwave fluidised bed dryer. Comput. Electron. Agric. 2021, 182, 106003. [Google Scholar] [CrossRef]
- Verma, D.K.; Kazi, M.; Alqahtani, M.S.; Syed, R.; Berdimurodov, E.; Kaya, S.; Salim, R.; Asatkar, A.; Haldhar, R. N–hydroxybenzothioamide derivatives as green and efficient corrosion inhibitors for mild steel: Experimental, DFT and MC simulation approach. J. Mol. Struct. 2021, 1241, 130648. [Google Scholar] [CrossRef]
- Berdimurodov, E.; Kholikov, A.; Akbarov, K.; Guo, L.; Kaya, S.; Katin, K.P.; Verma, D.K.; Rbaa, M.; Dagdag, O.; Haldhar, R. Novel gossypol–indole modification as a green corrosion inhibitor for low–carbon steel in aggressive alkaline–saline solution. Colloids Surf. A Physicochem. Eng. Asp. 2022, 637, 128207. [Google Scholar] [CrossRef]
Conc (ppm) | Temp (K) | βa (mV/Decade) | βc (mV/Decade) | Ecorr (mV vs. SCE) | icorr (mA/cm2) | η (%) |
---|---|---|---|---|---|---|
Blank | 303.0 | 139.8 | 206.7 | −482.0 | 6.27 | − |
Blank | 313.0 | 205.3 | 235.4 | −441.8 | 17.20 | − |
Blank | 323.0 | 221.7 | 256.8 | −437.0 | 25.30 | − |
20 | 303.0 | 92.2 | 176.9 | −494.3 | 0.460 | 92.66 |
20 | 313.0 | 100.2 | 144.2 | −486.6 | 0.279 | 98.38 |
20 | 323.0 | 72.8 | 155.8 | −476.3 | 0.325 | 98.72 |
40 | 303.0 | 93.3 | 167.3 | −470.2 | 1.37 | 78.16 |
40 | 313.0 | 132.7 | 173.5 | −410.9 | 4.33 | 74.83 |
40 | 323.0 | 202.0 | 273.4 | −440.4 | 13.887 | 45.11 |
80 | 303.0 | 55.3 | 219.6 | −413.3 | 0.054 | 99.14 |
80 | 313.0 | 75.1 | 172.9 | −442.1 | 0.066 | 99.62 |
80 | 323.0 | 70.7 | 157.2 | −436.7 | 0.075 | 99.70 |
Conc (ppm) | Temp (K) | CPE Component | |||||||
---|---|---|---|---|---|---|---|---|---|
Y0 (×10−3) (Ω−1 sn cm−2) | n | Chi-Sq | Cdl (μF/cm2) | Rs (Ω) | Rp (Ω) | τ (mS) | η (%) | ||
Blank | 303.0 | 1.116 ± 0.00018 | 0.8875 ± 0.0223 | 16.8 × 10−3 | 458.025 | 0.796 ± 0.0158 | 4.802 ± 0.1760 | 2.199 | - |
Blank | 313.0 | 1.958 ± 0.00047 | 0.9026 ± 0.0334 | 6.2 × 10−5 | 966.180 | 0.731 ± 0.0159 | 2.566 ± 0.1227 | 2.479 | - |
Blank | 323.0 | 3.010 ± 0.00101 | 0.9063 ± 0.0499 | 5.3 × 10−2 | 1588.451 | 0.685 ± 0.0162 | 1.373 ± 0.0843 | 2.181 | - |
20 | 303.0 | 0.660 ± 0.00005 | 0.7574 ± 0.0099 | 3.9 × 10−3 | 67.008 | 1.195 ± 0.0214 | 26.09 ± 0.7091 | 1.748 | 81.59 |
20 | 313.0 | 0.335 ± 0.00052 | 0.7998 ± 0.0099 | 3.3 × 10−3 | 44.753 | 0.960 ± 0.0174 | 62.05 ± 1.7264 | 2.777 | 95.86 |
20 | 323.0 | 0.388 ± 0.00019 | 0.7970 ± 0.0006 | 2.2 × 10−3 | 51.052 | 0.888 ± 0.0131 | 36.96 ± 0.7356 | 1.887 | 96.29 |
40 | 303.0 | 0.305 ± 0.00054 | 0.8579 ± 0.0248 | 4.1 × 10−2 | 80.190 | 1.144 ± 0.0547 | 56.26 ± 4.7627 | 4.512 | 91.46 |
40 | 313.0 | 0.686 ± 0.00073 | 0.8001 ± 0.0139 | 8.3 × 10−3 | 106.492 | 0.844 ± 0.0203 | 19.13 ± 0.70432 | 2.037 | 86.59 |
40 | 323.0 | 1.057 ± 0.00095 | 0.7674 ± 0.0115 | 3.9 × 10−3 | 122.482 | 0.771 ± 0.0127 | 8.523 ± 0.19221 | 1.044 | 83.89 |
80 | 303.0 | 3.676 ± 0.00032 | 0.7690 ± 0.0143 | 9.3 × 10−3 | 1387.049 | 10.61 ± 0.165 | 233 ± 19.067 | 323.182 | 97.94 |
80 | 313.0 | 3.021 ± 0.000526 | 0.75195 ± 0.0278 | 34.4 × 10−3 | 940.987 | 9.638 ± 0.3488 | 253.4 ± 38.402 | 238.446 | 98.99 |
80 | 323.0 | 0.553 ± 0.00029 | 0.8115 ± 0.0089 | 4.5 × 10−3 | 139.537 | 4.812 ± 0.0499 | 137.8 ± 7.3149 | 19.228 | 99.00 |
Mode | Evolution Film Prediction Accuracy (%) | Evolution Film Prediction Loss (%) | Evolution Film Evaluation Accuracy (%) | Evolution Film Evaluation Loss (%) |
---|---|---|---|---|
Uninhibited | 66.67 | 4.6807 | 61.54 | 20.0593 |
Inhibited | 81.08 | 0.6001 | 80.00 | 0.6032 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaban, A.P.S.; Soedarsono, J.W.; Mayangsari, W.; Anwar, M.S.; Maksum, A.; Ridhova, A.; Riastuti, R. Insight on Corrosion Prevention of C1018 in 1.0 M Hydrochloric Acid Using Liquid Smoke of Rice Husk Ash: Electrochemical, Surface Analysis, and Deep Learning Studies. Coatings 2023, 13, 136. https://doi.org/10.3390/coatings13010136
Kaban APS, Soedarsono JW, Mayangsari W, Anwar MS, Maksum A, Ridhova A, Riastuti R. Insight on Corrosion Prevention of C1018 in 1.0 M Hydrochloric Acid Using Liquid Smoke of Rice Husk Ash: Electrochemical, Surface Analysis, and Deep Learning Studies. Coatings. 2023; 13(1):136. https://doi.org/10.3390/coatings13010136
Chicago/Turabian StyleKaban, Agus Paul Setiawan, Johny Wahyuadi Soedarsono, Wahyu Mayangsari, Mochammad Syaiful Anwar, Ahmad Maksum, Aga Ridhova, and Rini Riastuti. 2023. "Insight on Corrosion Prevention of C1018 in 1.0 M Hydrochloric Acid Using Liquid Smoke of Rice Husk Ash: Electrochemical, Surface Analysis, and Deep Learning Studies" Coatings 13, no. 1: 136. https://doi.org/10.3390/coatings13010136
APA StyleKaban, A. P. S., Soedarsono, J. W., Mayangsari, W., Anwar, M. S., Maksum, A., Ridhova, A., & Riastuti, R. (2023). Insight on Corrosion Prevention of C1018 in 1.0 M Hydrochloric Acid Using Liquid Smoke of Rice Husk Ash: Electrochemical, Surface Analysis, and Deep Learning Studies. Coatings, 13(1), 136. https://doi.org/10.3390/coatings13010136