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Abstract: Large-scale popularization and application make the role of lithium-ion batteries in-
creasingly prominent and the requirements for energy density have increased significantly. The
silicon-based material has ultra-high specific capacity, which is expected in the construction of next-
generation high specific-energy batteries. In order to improve conductivity and maintain structural
stability of the silicon anode in application, and further improve the energy density of the lithium-ion
battery, we designed and synthesized carbon-coated porous silicon structures using diatomite and
polysaccharides as raw materials. The electrode materials constructed of diatomite exhibit porous
structures, which can provide fast transport channels for lithium ions, and effectively release the
stress caused by volume expansion during cycling. At the same time, the electrical conductivity of
the materials has been significantly improved by compounding with biomass carbon, so the batteries
exhibit stable electrochemical performance. We systematically studied the effect of different contents
of biomass carbon on the Li2MnSiO4/C cathode, and the results showed that the carbon content
of 20% exhibited the best electrochemical performance. At a current density of 0.05C, the capacity
close to 150 mAh g−1 can be obtained after 50 cycles, which is more than three times that of without
biomass carbon. The silicon-based anode composited with biomass carbon also showed excellent
cycle stability; it could still have a specific capacity of 1063 mAh g−1 after 100 cycles at the current
density of 0.1 A g−1. This study sheds light on a way of synthesizing high specific-capacity electrode
materials of the lithium-ion battery from natural raw materials.

Keywords: diatomite; lithium-ion batteries; Li2MnSiO4/C cathode; natural raw materials

1. Introduction

With the development of modern industry and human society, fossil energy is depleted
day by day, and environmental issues have received increasing attention. Researchers have
begun to turn their attention to renewable and clean energy such as solar energy, tidal
energy, and wind energy, etc. Secondary batteries, fuel cells, and supercapacitors are
the most common high-efficiency energy storage devices [1–3]. Among these, secondary
batteries stand out due to their high energy density, strong environmental adaptability,
and wide application range [4,5]. In recent years, lithium-ion batteries have been widely
used in portable electronic devices, electric vehicles, household power supply, etc. With
the popularity of electric vehicles, the demand for lithium-ion batteries has particularly
surged. Therefore, lithium-ion batteries with higher energy density, lower cost, and stable
operation are the source of high hopes [6]. At the same time, as an important part of the
battery, the synthesis of electrode materials with high, specific energy and low cost is an
important area of research [7].
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In recent years, researchers have begun to use bio-renewable and sustainable source
raw materials to synthesize electrode materials for reducing environmental damage caused
by waste [8–10]. Before that, biomass materials with multifarious and abundant resources
have been widely used in electrical energy storage, electrocatalysis, photocatalysis, multi-
phase catalysis, bio-fuel environment, etc. [11,12]. Currently, biomass and biowaste-based
carbon materials as anode materials for lithium-ion batteries have received extensive
attention due to the advantages of being inexpensive, abundant, and environmentally
friendly [13,14]. The basic elements of carbon, sulfur, nitrogen, and phosphorus can in-
crease the wettability and reduce the transfer resistance of the biomass-derived carbon
material, which contributes to the increase in battery capacity [15]. Meanwhile, biomass-
derived carbon materials possess naturally ordered unique hierarchical structures as well
as abundant surface properties and active sites, which facilitate ion transfer and diffu-
sion [16,17]. Thus, research has been conducted on the use of low-cost, environmentally
friendly biomass materials to synthesize electrode materials for lithium-ion batteries [18].
The electrode materials that have been reported to use biomass synthesis include rice husks,
bamboo leaves, diatomite, etc. [19,20].

Diatomite is a bio-deposited siliceous rock formed from diatom remains over a long
period of time in the natural environment; it is mainly composed of amorphous protein
minerals of SiO2 [21,22]. Diatomite is non-toxic, high in purity, and low in acquisition cost.
Natural diatoms have different shapes, resulting in the formation of diatomite showing a
variety of different microscopic forms, mostly in the shape of a round sieve, a column, or
a belt [23–25]. The wall shell of diatomite is composed of multi-level, large, and orderly
arranged micropores which are widely used as reaction catalysts, fillers, thermal insulation
materials, and filter materials due to the properties of being lightweight, porous, with a
large specific surface area, and a strong adsorption capacity [26,27].

Among the electrode materials of lithium-ion batteries, Li2MnSiO4 (LMS) cathode
electrode material and Si anode electrode material have been reported with high en-
ergy density [28,29]. For cathode materials, Li2MnSiO4 has high theoretical capacitance
(333 mA hg−1) and excellent thermal stability due to the Si–O covalent bond [30,31]. Silicon
is one of the most valuable anode materials of lithium-ion battery because it has a high
theoretical capacity (~4200 mA hg−1), low working potential, is an abundant resource,
and is environmentally friendly [32–34]. Both of these materials can be synthesized using
diatomite, so the cost can be effectively reduced. However, the silicon anode electrode has a
large volume of more than 400% due to charging and discharging. Therefore, it is necessary
to modify the material in a suitable way in order to bring out the advantages of the silicon
anode [35–37]. Researchers have explored a variety of strategies to solve the issues, such
as designing the structure of silicon materials which contain nano-silicon, layered silicon,
porous silicon, etc. Another more effective way is to compound silicon with other materials
to maintain the stability of silicon in the cycle, which contains carbon, metal oxide, sulfide,
two-dimensional materials, etc. [38–40]. Glucose is a good carbon source that can build a
three-dimensional conductive carbon network inside the materials, further improving the
electronic conductivity of the materials [41,42].

In this work, we synthesized a diatomite-derived Li2MnSiO4/C cathode electrode
material and a Si/C anode electrode material with excellent electrochemical performance.
New smaller holes could be generated between the diatomaceous earth particles during
the preparation of the Si material. In addition, the fabricated anode material maintained
a discharge capacity of 1063 mAh g−1 after 100 cycles, showing excellent electrical per-
formance and good stability. While the expansion and increase in internal resistance of
the anode material can be suppressed, both the capacity retention rate and the coulombic
efficiency can be improved. The Li2MnSiO4/C cathode also delivered a specific capacity of
249.3 mAh g−1 in the first cycle and maintained a specific capacity of about 150 mAh g−1

after 50 cycles were compared. The results show that the synthesized Li2MnSiO4/C cathode
material has good electrochemical performance and stability. For most lithium electrode
materials, although a high capacity can be achieved, the extraction process is highly compli-
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cated and costly. We used low-cost diatomite as a precursor to synthesize lithium electrode
materials and obtained a higher theoretical capacity for the first time. This study provides
a strong candidate for the utilization of environmentally friendly biomass towards efficient
energy storage through facile and low-cost procedures.

2. Materials and Methods

All chemicals were of analytical grade and used as received without further purifi-
cation. Diatomite (Wako, 99%), MnCO3·nH2O (Wako, 99%), LiOH·H2O (Wako, 99%), Mg
(Wako, 99%), and NaCl (Wako, 99%).

2.1. Fabrication of Cathode Electrode Li2MnSiO4/C

Diatomite was treated with 1M HCl solution to obtain high purity SiO2. The obtained
SiO2, MnCO3·nH2O, and LiOH·H2O were individually, finely pulverized in an agate
mortar for 30 min. Then, the various processed materials were mixed together and ground
for another 15 min. Next, the mixed sample was added to the ethanol solution and stirred
thoroughly for dispersion for 6 h. After vacuum drying, calcining in tube furnace for 8 h
under argon atmosphere at 700 ◦C, the Li2MnSiO4 material was obtained. Finally, the
glucose was added to Li2MnSiO4 material to obtain different proportions of carbon (weight
ratio 0%, 10%, 20%) by calcining in tube furnace for 2 h under argon atmosphere at 600 ◦C
to prepare three cathode materials of LMS/wt.0% C, LMS/wt.10% C, and LMS/wt.20% C.

2.2. Fabrication of Anode Electrode Si/C

First, the treated diatomite, Mg powder, and NaCl were ground in an agate mortar
for 30 min. The mixing sample was calcined in the tube furnace for 8 h under argon
atmosphere at 700 ◦C [43]. Then, the argon was replaced with nitrogen and calcined for
another 8 h. Next, the obtained sample was added to 1M HCl solution to remove impurities
to obtain porous silicon material. After compounding with glucose, carbonizing for 2 h
under argon atmosphere at 600 ◦C, the final Si/C anode material with carbon content of
10% was obtained (DS–3). The additional samples DS-1 (without NaCl and N2 process)
and DS–2 (without N2 process) were also prepared according to different conditions.

The synthesis procedure is shown in Figure 1.
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2.3. Fabrication of Coin Batteries

The active materials, conductive additive acetylene black, and polyvinylidene diflu-
oride (PVDF) were mixed with NMP at a ratio of 80:10:10 to form homogenous slurries.
The slurries were coated on aluminum foil for cathode material and copper foil for anode
material. The obtained electrodes were dried at 90 ◦C for 2 h, and then transferred to
vacuum oven at 120 ◦C for 10 hours. The mass loading of active materials in the working
electrodes was 1.0–1.5 mg/cm2, with lithium metal as the counter electrode. The 2032 type
button batteries were manufactured using the manufactured electrodes. The microporous
polypropylene membrane was used as a separator. The electrolyte was 1 M LiPF6 in a
mixed ethylene carbonate/diethyl carbonate solvent (1:1) with 5% fluoroethylene carbonate
(FEC) additive.

3. Results and Discussion
3.1. Morphology Characteristics

The scanning electron microscope (SEM) measurement was used to observe and
analyze the characteristics of material morphology, as shown in Figure 2. The diatomite
we used has a complete shape, and the micropores on the wall are uniform in size and
arranged in an orderly manner. It is an exquisite natural porous material (Figure 2a).
The diatomite in the shape of a round cake has a rich and well-developed honeycomb
porous structure (Figure 2b). Thus, the large specific surface area of diatomite is conducive
to the embedding of lithium ions, and the porous circular cake structure can provide
more buffer space to enhance the stability. The Si/C anode material obtained by reducing
diatomite maintains the characteristics, and the surface is rougher from the increased porous
structure (Figure 2c,d). This special structure can maintain the structural stability of the Si-
based material during cycling, which was also proved by subsequent electrochemical tests.
The surface morphology of Li2MnSiO4/C cathode material is different from the original
diatomite. The observed void structure is significantly smaller, and the surface has obvious
granularity (Figure 2e,f). This is mainly because the synthesis process of Li2MnSiO4/C
cathode material is an “addition” reaction, which is different from the diatomite-based
“reduction” reaction of the Si/C anode material in the reaction process.
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Figure 2. The SEM images of (a,b) diatomite, (c,d) Si/C anode material, and (e,f) Li2MnSiO4/C
cathode material.

Transmission electron microscopy (TEM) and energy-dispersive X-ray spectroscopy
(EDX) were used to further analyze the structure of the samples on a smaller scale, which is
shown in Figures 3 and 4. It shows that the Li2MnSiO4/C cathode material is composed of
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100 nm~200 nm particles (Figure 3a,b). EDX element mapping displays that the elements
of O, Si, and Mn are evenly distributed on the surface of the Li2MnSiO4/C composite
(Figure 3c–e). And the Si/C anode material is distributed with a porous structure and with
Si elements uniformly distributed (Figure 4).
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3.2. Structural Characteristics

The X-ray diffraction (XRD) patterns were used to determine the main composition of the
Li2MnSiO4/C cathode and Si/C anode. It was found that the XRD pattern of Li2MnSiO4/C
contained an impure phase that belonged to MnO as shown in Figure 5a. However, other
characteristic peaks are consistent with the pure Li2MnSiO4 phase. Figure 5b shows the XRD
diffraction patterns of different Si/C anode materials prepared by changing the synthesis
conditions. The characteristic peaks at 76.7◦, 69◦, 56.2◦, 47.4◦, and 28.5◦ are attributed to the
(331), (400), (311), (220), and (111) of pure silicon lattice planes, respectively [34]. Therefore, it
was confirmed that there are no other impurities in the synthesized samples.
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The specific surface area and pore volume of the samples were measured by the N2
adsorption method based on Brunauer–Emmett–Teller (BET), which is shown in Figure 6
and Table 1. The diatomite has a specific surface area of 32.6 m2 g−1, while the specific sur-
face area of the Li2MnSiO4/C cathode material is reduced by about five times to 6.4 m2 g−1

(Figure 6a). Due to the generated internal “addition” reaction with the MnCO3·nH2O and
LiOH·H2O, the mass of diatomite increases, which will significantly reduce the size of the
structural pores, which is also confirmed by the SEM. Different from the Li2MnSiO4/C
cathode material, the specific surface areas of the synthesized anode materials DS–1, DS–2,
and DS–3 increase to 137.6, 160.6, and 253.0 m2 g−1, respectively. As a result of the “reduc-
tion” reaction, the oxygen atoms in the diatomite are released, and more space is reserved
in the structure.

Table 1. BET measurement result of materials.

Material Specific Surface
Area/m2 g−1 Pore Volume/m3 g−1

Precursor Diatomite 32.6 0.05

Cathode Li2MnSiO4/C 6.4 0.01

Anode
DS–1 137.6 0.18
DS–2 160.6 0.56
DS–3 253.0 1.07
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3.3. Electrochemical Performance

The cyclic voltammetry (CV) curves of the Li2MnSiO4/C cathode and the DS-3 anode
are shown in Figure 7. For Li2MnSiO4/C cathode, the peaks around 3.6 V and 4.3 V at
the cathodic scan are due to the conversion reaction of Mn2+ to Mn3+ and Mn4+. The
peaks at 2.0 V, 2.8 V, and 4.4 V at the cathodic scan are due to the reversible reduction of
Mn4+ to Mn2+ (Figure 7a). Figure 7b shows the redox curve of a typical Si-based anode.
The cathodic peak at 0.1 V corresponds to the formation of an amorphous Si–Li alloy,
while two anodic peaks at 0.25 and 0.5 V are due to the conversion reaction of LixSi to
amorphous Si. Figure 7c shows the charge–discharge curves of Li2MnSiO4/C with different
carbon content during the first cycle at a current density of 0.05C. The discharge capacity
of LMS/wt.0% C is 187.4 mAhg−1, which is 59% of the charge capacity of 318.2 mAhg−1,
while the LMS/wt.10% C and LMS/wt.20% cathode exhibit over 80% initial coulomb
efficiency. Figure 7d shows the cycle curves of Li2MnSiO4/C cathode materials at a current
density of 0.05C. Compared to LMS/wt.0% C and LMS/wt.10% C, LMS/wt.20% C has
the best electrochemical performance. For LMS/wt.20% C, the specific capacity is about
150 mAh g−1 after 50 cycles, which proved it has stable cycling performance. The results
of LMS/wt.10% C and LMS/wt.20% proved that combining with carbon is an effective
way to improve the conductivity of the Li2MnSiO4 cathode. Figure 7e shows the cycle
curves of the Si/C anode. After 100 cycles, the discharge specific capacity of the DS-3 anode
is 1063 mA h g−1, which is much superior to DS-1 and DS-2. This is due to the fact that
the original shape and porous structure of diatomite are maintained during the synthesis
process. In addition, the participation of N2 is conducive to the generation of porous
structure which provides more buffer space for the expansion of the Si-based anode during
cycling. At the same time, the rate capability test is also used to confirm the performance
of Si/C anode materials at different current densities (Figure 7f). As expected, the DS-3
anode material exhibits the best rate performance, and when the current density returned
to 100 mA g−1, its specific capacity returned to above 1000 mAh g−1.
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of Si/C anode materials under the potential range from 0.005 to 3.0 V at a current density of 0.1 A g−1.

4. Conclusions

In this work, we designed and synthesized a porous Li2MnSiO4/C cathode and Si/C
anode materials using natural diatomite and glucose. By compounding, the electrical
conductivity of the materials is significantly improved, and the porous structures of the ma-
terials can effectively maintain stability. Through gradient comparison, the Li2MnSiO4/C
cathode material prepared with 20% glucose has better electrochemical performance and
capacity retention after 50 cycles. With a simple mixed calcination treatment, we obtained
a stable Si/C anode material with high specific capacity. After different conditions and
comparisons, we screened out the best reaction conditions. By mixing NaCl and adding
a step of nitrogen calcination, the treated materials react more fully, the impurities can
be effectively removed, and a purer product sample DS-3 can be obtained which has a
smaller particle size distribution. It has a larger specific surface area of 253 m2 g−1 while
still maintaining a porous structure, which has a positive effect on the fast transport of
lithium ions. Thus, the cycling performance of the material can be improved. After 100 cy-
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cles, the material can maintain the capacity of above 1000 mAh g−1 at the current density
of 100 mA g−1. This provides a very good reference for the use of natural materials to
construct high specific-energy lithium-ion batteries.
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