Effect of Coating Thickness on the Atomic Oxygen Resistance of Siloxane Coatings Synthesized by Plasma Polymerization Deposition Technique
Abstract
:1. Introduction
2. Experimental Procedure
2.1. Synthesis of the Siloxane Coating
2.2. Characteristics of the Silicone Coating
3. Results and Discussion
3.1. Thickness and Uniformity of the Silicone Coating
3.2. Morphologies of the Siloxane Coating
3.3. Cyclic Damp-Heat Test for the Siloxane Coating
3.4. Atomic Oxygen Resistance of the Siloxane Coating
3.5. Mechanism of the Atomic Oxygen Attacking Materials
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dignam, A.; Wozniakiewicz, P.J.; Burchell, M.J.; Alesbrook, L.S.; Tighe, A.; Suliga, A.; Wessing, J.; Kearsley, A.; Bridges, J.; Holt, J.; et al. Palladium-coated kapton for use on dust detectors in low earth orbit: Performance under hypervelocity impact and atomic oxygen exposure. Front. Space Technol. 2022, 3, 933664. [Google Scholar] [CrossRef]
- Jiang, H.; Jiang, L.; Li, T.; Zheng, H.; Liu, P.; Yang, Q.; Yuan, X.; Yang, D.; Zang, W.; Wang, L. Current situation and development trend of neutral atmosphere simulation test technology. Spacecr. Environ. Eng. 2022, 39, 460–467. (In Chinese) [Google Scholar] [CrossRef]
- De Groh, K.K.; Banks, B.A. Atomic Oxygen Erosion Data from the MISSE 2–8 Missions; Technology Report; NASA/TM—2019-219982; National Aeronautics and Space Administration Glenn Research Center: Cleveland, OH, USA, 2019. [Google Scholar]
- Silverman, E.M. Space Environmental Effects on Spacecraft: LEO Materials Selection Guide: II. Progress Report; Technology Report; CR–4661; NASA Langley Technical Report: Langley, BC, Canada, 1995. [Google Scholar]
- Whiteside, J.B.; Kamykowski, E.; Rooney, W.D.; Schulte, R.; Stauber, M. Effects of 69 months in low Earth orbit on Kapton antenna structures. J. Spacecr. Rocket. 1994, 31, 860–865. [Google Scholar] [CrossRef]
- Shimamura, H.; Nakamura, T. Investigation of degradation mechanisms in mechanical properties of polyimide films exposed to a low earth orbit environment. Polym. Degrad. Stab. 2010, 95, 21–33. [Google Scholar] [CrossRef]
- Gregory, J.C.; Peters, P.N. The reactions of 5 eV oxygen atoms with polymeric and carbon surfaces in orbit. Polymer 1987, 28, 459–460. [Google Scholar]
- Zimcik, D.G.; Maag, C.R. Results of apparent atomic oxygen reactions with spacecraft materials during Shuttle flight STS-41G. J. Spacecr. Rocket. 1988, 25, 162–168. [Google Scholar] [CrossRef]
- Reddy, M.R. Effect of low earth orbit atomic oxygen on spacecraft materials. J. Mater. Sci. 1995, 30, 281–307. [Google Scholar] [CrossRef]
- Banks, B.A.; Miller, S.K.; de Groh, K.K. Low Earth Orbital Atomic Oxygen Interactions with Materials. In Proceedings of the 2nd International Energy Conversion Engineering Conference, Providence, RI, USA, 16–19 August 2004. [Google Scholar]
- Ma, A.; Huang, X. Development of Manned Space Environmental Simulation Technology. Space Med. Med. Eng. 2008, 21, 224–232. (In Chinese) [Google Scholar] [CrossRef]
- Arnold, G.S.; Peplinski, D.R. Reaction of atomic oxygen with polyimide films. AIAA J. 1985, 23, 1621–1626. [Google Scholar] [CrossRef]
- Koontz, S.L.; Albyn, K.; Leger, L.J. Atomic oxygen testing with thermal atom systems—A critical evaluation. J. Spacecr. Rocket. 1991, 28, 315–323. [Google Scholar] [CrossRef]
- Duo, S.; Meishuan, L.I.; Zhang, Y.; Yan, C. Atomic oxygen attack on space materials in LEO environment and protective coatings. Corros. Sci. Technol. Prot. 2022, 14, 152–156. [Google Scholar]
- Xiong, Y.Q.; Xie, S.P. Measurement methods of atomic oxygen concentration. J. Transducer Technol. 1999, 18, 8–12. [Google Scholar]
- Semonin, D.L.; Brunsvold, A.M.; Minton, T.K. Erosion of Kapton H® by hyperthermal atomic oxygen. J. Spacecr. Rocket. 2006, 43, 421–425. [Google Scholar]
- Banks, B.; Rutledge, S.; Stueber, T.; Snyder, S.; Norris, M.; Norris, M. Atomic Oxygen Erosion Phenomena; AIAA-97-3903; American Institute of Aeronautics and Astronautics: Reston VA, USA, 1997. [Google Scholar]
- Hu, L.; Li, M.; Zhou, Y. Effects of Vacuum Ultraviolet Radiation on Atomic Oxygen Erosion of Polysiloxane/SiO2 Hybrid Coatings. J. Mater. Sci. Technol. 2009, 25, 483–488. [Google Scholar]
- Tagawa, M.; Yokota, K. Atomic oxygen-induced polymer degradation phenomena in simulated LEO space environments: How do polymers react in a complicated space environment? Acta Astronaut. 2008, 62, 203–211. [Google Scholar] [CrossRef]
- Minton, T.K.; Wright, M.E.; Tomczak, S.J.; Marquez, S.A.; Shen, L.H.; Brunsvold, A.L.; Cooper, R.; Zhang, J.M.; Vij, V.; Guenthner, A.J.; et al. Atomic Oxygen Effects on POSS Polyimides in Low Earth Orbit. ACS Appl. Mater. Interfaces 2012, 4, 492–502. [Google Scholar] [CrossRef] [PubMed]
- Hu, L.; Li, M.; Xu, C.; Luo, Y.; Zhou, Y. A polysilazane coating protecting polyimide from atomic oxygen and vacuum ultraviolet radiation erosion. Surf. Coat. Technol. 2009, 203, 3338–3343. [Google Scholar] [CrossRef]
- Wu, W.; Lv, H.; Wang, D.; Du, L. Protection of Kapton from atomic-oxygen erosion using alumina film deposited by magnetron sputtering. In Proceedings of the MATEC Web of Conferences; EDP Sciences: Les Ulis, France, 2016; Volume 67, p. 04023. [Google Scholar]
- Qi, H.; Qian, Y.; Xu, J.; Li, M. Studies on atomic oxygen erosion resistance of deposited Mg-alloy coating on Kapton. Corros. Sci. 2017, 124, 56–62. [Google Scholar] [CrossRef]
- Banks, B.A.; Rutledge, S.K.; De Groh, K.K.; Auer, B.M.; Mirtich, M.J.; Gebauer, L.; Hill, C.M.; Lebed, R.F. LDEF spacecraft ground laboratory and computational modeling implications on Space Station Freedom’s solar array materials and surfaces durability. In Proceedings of the IEEE Photovoltaic Specialists Conference, Las Vegas, NV, USA, 7–11 October 1991; Volume 2, pp. 1434–1439. [Google Scholar]
- Banks, B.; Rutledge, S.; Gebauer, L.; LaMoreaux, C. SiO(X) coatings for atomic oxygen protection of polyimide Kapton in low earth orbit. In Proceedings of the Materials Specialist Conference-Coating Technology for Aerospace Systems, Dallas, TX, USA, 16–17 April 1992. [Google Scholar]
- Banks, B.A.; Rutledge, S.K.; Cales, M. Performance characterizations of EURECA Retroreflectors with fluoropolymer-filled SiOx protective coatings. In Proceedings of the NASA. Langley Research Center, LDEF: 69 Months in Space. Third Post-Retrieval Symposium; NASA: Washington, DC, USA, 1995. [Google Scholar]
- Miyazaki, E.; Tagawa, M.; Yokota, K.; Yokota, R.; Kimoto, Y.; Ishizawa, J. Investigation into tolerance of polysiloxane-block-polyimide film against atomic oxygen. Acta Astronaut. 2010, 66, 922–928. [Google Scholar] [CrossRef]
- Lei, X.; Qiao, M.; Tian, L.; Chen, Y.; Zhang, Q. Evolution of surface chemistry and morphology of hyperbranched polysiloxane polyimides in simulated atomic oxygen environment. Corros. Sci. 2015, 98, 560–572. [Google Scholar] [CrossRef]
- Cooper, R.; Upadhyaya, H.P.; Minton, T.K.; Berman, M.R.; Du, X.; George, S.M. Protection of polymer from atomic-oxygen erosion using Al2O3 atomic layer deposition coatings. Thin Solid Films 2008, 516, 4036–4039. [Google Scholar] [CrossRef]
- Liu, K.; Mu, H.; Shu, M.; Li, Z.; Gao, Y. Improved adhesion between SnO2/SiO2 coating and polyimide film and its applications to atomic oxygen protection. Colloids Surf. A Physicochem. Eng. Asp. 2017, 529, 356–362. [Google Scholar] [CrossRef]
- Song, G.; Li, X.; Jiang, Q.; Mu, J.; Jiang, Z. A novel structural polyimide material with synergistic phosphorus and POSS for atomic oxygen resistance. RSC Adv. 2015, 5, 11980–11988. [Google Scholar] [CrossRef]
- Vernigorov, K.B.; Alentev, A.Y.; Meshkov, I.B. Use of Hyper-branched Polyethoxysiloxane to Improve the Resistance of Thermoplastic Polyimide Coatings to Atomic Oxygen Environment. Inorg. Mater. Appl. Res. 2012, 3, 81–87. [Google Scholar] [CrossRef]
- Zheng, K.; Yang, S.; Li, Z.; Wang, J.; Zhao, L. The preparation of organic silicon atomic-oxygen-protection film and its properties. Spacecr. Environ. Eng. 2010, 6, 751–755. (In Chinese) [Google Scholar] [CrossRef]
- Angelini, E.; D’Agostino, R.; Fracassi, F.; Grassini, S.; Rosalbino, F. Surface analysis of PECVD organosilicon films for corrosion protection of steel substrates. Surf. Interface Anal. 2002, 34, 155–159. [Google Scholar] [CrossRef]
- Mu, H.; Wang, X.; Li, Z.; Xie, Y.; Gao, Y.; Liu, H. Preparation and atomic oxygen erosion resistance of SiOx coating formed on polyimide film by plasma polymer deposition. Vacuum 2019, 165, 7–11. [Google Scholar] [CrossRef]
- Yokota, K.; Tagawa, M.; Ohmae, N. Temperature Dependence in Erosion Rates of Polyimide Under Hyperthermal Atomic Oxygen Exposures. J. Spacecr. Rocket. 2003, 40, 143–144. [Google Scholar] [CrossRef]
- de Groh, K.K.; Banks, B.A. Atomic-oxygen undercutting of long duration exposure facility atomized-Kapton multilayer insulation. J. Spacecr. Rocket. 1994, 31, 656–664. [Google Scholar] [CrossRef]
- Banks, B.A.; Snyder, A.; Miller, S.K.; De Groh, K.K.; Demko, R. Atomic-Oxygen Undercutting of Protected Polymers in Low Earth Orbit. J. Spacecr. Rocket. 2004, 41, 335–339. [Google Scholar] [CrossRef]
- Liu, Y.; Li, G. Numerical simulation on atomic oxygen undercutting of Kapton film in low earth orbit. Acta Astronaut. 2010, 67, 388–395. [Google Scholar] [CrossRef]
Winding Speed (mm/min) | Average Thickness of Coatings (nm) |
---|---|
54 | 198 |
32 | 335 |
30 | 360 |
29 | 374 |
26 | 418 |
21 | 510 |
17 | 615 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, L.; Leng, X.; Bai, B.; Zhao, R.; Cai, Z.; He, J.; Li, J.; Chen, H. Effect of Coating Thickness on the Atomic Oxygen Resistance of Siloxane Coatings Synthesized by Plasma Polymerization Deposition Technique. Coatings 2023, 13, 153. https://doi.org/10.3390/coatings13010153
Zhao L, Leng X, Bai B, Zhao R, Cai Z, He J, Li J, Chen H. Effect of Coating Thickness on the Atomic Oxygen Resistance of Siloxane Coatings Synthesized by Plasma Polymerization Deposition Technique. Coatings. 2023; 13(1):153. https://doi.org/10.3390/coatings13010153
Chicago/Turabian StyleZhao, Lin, Xuesong Leng, Bowen Bai, Rui Zhao, Zeyun Cai, Jianchao He, Jin Li, and Hongsheng Chen. 2023. "Effect of Coating Thickness on the Atomic Oxygen Resistance of Siloxane Coatings Synthesized by Plasma Polymerization Deposition Technique" Coatings 13, no. 1: 153. https://doi.org/10.3390/coatings13010153
APA StyleZhao, L., Leng, X., Bai, B., Zhao, R., Cai, Z., He, J., Li, J., & Chen, H. (2023). Effect of Coating Thickness on the Atomic Oxygen Resistance of Siloxane Coatings Synthesized by Plasma Polymerization Deposition Technique. Coatings, 13(1), 153. https://doi.org/10.3390/coatings13010153