Evaluation of Solid Particle Erosion of EB-PVD TBCs under Thermal Cycling Conditions Based on a Stochastic Approach
Abstract
:1. Introduction
2. Mechanics-Based Formulae for Evaluating Solid Particle Erosion under Thermal Cycling Environments
2.1. Parameters Affecting Deformation Wear Kinetic Energy ε
2.2. Parameters Affecting Cutting Wear Kinetic Energy ϕ
2.3. Stochastic Erosion Process for EB-PVD TBCs under Thermal Cycling Conditions
3. Model Parameters under Thermal Cycles
3.1. Temperature Profile under Thermal Cycling Conditions
3.2. Material Properties of EB-PVD TC under Thermal Cycling Conditions
3.2.1. Variation of the Density of EB-PVD TBCs under Thermal Cycling Conditions
3.2.2. Variation of the out-of-Plane Elastic Modulus of EB-PVD TC under Thermal Cycling Conditions
3.2.3. Variation of Anisotropic Vickers Hardness of EB-PVD TC under Thermal Cycling Conditions
3.2.4. Variation of Yield Strength of EB-PVD TC under Thermal Cycling Conditions
3.3. Characteristics of Cutting Wear and Deformation Wear Kinetic Energies of EB-PVD TC under Thermal Cycling Conditions
3.3.1. Fitting Temperature-Dependent Model Parameters η″ and ξ″
3.3.2. Effect of Sintering on Cutting Wear and Deformation Wear Kinetic Energies
4. Results and Discussion
4.1. Temperature-Time-Dependent Erosion Rate during Thermal Cycling Versus Erosion Parameters
4.1.1. The Calculated Erosion Rate vs. Thermal Cycle and Impact Velocity
4.1.2. The Calculated Erosion Rate versus Accumulated Erodent Mass under Thermal Cycles
4.1.3. The Calculated Erosion Rate versus Impact Angles under Thermal Cycles
4.2. Temperature-Time-Dependent Erosion Rate during Thermal Cycling Based on Variation of Thermal Cycling Parameters
4.2.1. The Calculated Erosion Rate Versus Ratio Rt
4.2.2. The Calculated Erosion Versus Accumulated Erodent Mass under Different Ratio Rt
4.2.3. The Calculated Erosion Rate Versus Impact Angles under Different Ratios Rt
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Strangman, T.; Raybould, D.; Jameel, A.; Baker, W. Damage mechanisms, life prediction, and development of EB-PVD thermal barrier coatings for turbine airfoils. Surf. Coat. Technol. 2007, 202, 658–664. [Google Scholar] [CrossRef]
- Tolpygo, V.; Clarke, D.; Murphy, K. Oxidation-induced failure of EB-PVD thermal barrier coatings. Surf. Coat. Technol. 2001, 146–147, 124–131. [Google Scholar] [CrossRef]
- Ozgurluk, Y.; Doleker, K.M.; Ozkan, D.; Ahlatci, H.; Karaoglanli, A.C. Cyclic Hot Corrosion Failure Behaviors of EB-PVD TBC Systems in the Presence of Sulfate and Vanadate Molten Salts. Coatings 2019, 9, 166. [Google Scholar] [CrossRef] [Green Version]
- Zhang, B.; Chen, K.; Baddour, N.; Patnaik, P. Failure and life evaluation of EB-PVD thermal barrier coatings using temperature-process-dependent model parameters. Corros. Sci. 2019, 156, 1–9. [Google Scholar] [CrossRef]
- Schulz, U.; Fritscher, K.; Ebach-Stahl, A. Cyclic behavior of EB-PVD thermal barrier coating systems with modified bond coats. Surf. Coat. Technol. 2008, 203, 449–455. [Google Scholar] [CrossRef]
- Bhatnagar, H.; Ghosh, S.; Walter, M.E. Parametric studies of failure mechanisms in elastic EB-PVD thermal barrier coatings using FEM. Int. J. Solids Struct. 2006, 43, 4384–4406. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.; Wang, X.; Xiao, P. Sintering and failure behaviour of EB-PVD thermal barrier coating after isothermal treatment. Surf. Coat. Technol. 2006, 200, 5946–5955. [Google Scholar] [CrossRef]
- Courcier, C.; Maurel, V.; Rémy, L.; Quilici, S.; Rouzou, I.; Phelippeau, A. Interfacial damage based life model for EB-PVD thermal barrier coating. Surf. Coat. Technol. 2011, 205, 3763–3773. [Google Scholar] [CrossRef]
- Wellman, R.; Nicholls, J. Some observations on erosion mechanisms of EB PVD TBCS. Wear 2000, 242, 89–96. [Google Scholar] [CrossRef] [Green Version]
- Wellman, R.; Nicholls, J. A Monte Carlo model for predicting the erosion rate of EB PVD TBCs. Wear 2004, 256, 889–899. [Google Scholar] [CrossRef]
- Wellman, R.; Nicholls, J. Erosion, corrosion and erosion–corrosion of EB PVD thermal barrier coatings. Tribol. Int. 2008, 41, 657–662. [Google Scholar] [CrossRef] [Green Version]
- Wellman, R.; Deakin, M.; Nicholls, J. The effect of TBC morphology and aging on the erosion rate of EB-PVD TBCs. Tribol. Int. 2005, 38, 798–804. [Google Scholar] [CrossRef]
- Chen, J.; Beake, B.D.; Wellman, R.G.; Nicholls, J.R.; Dong, H. An investigation into the correlation between nano-impact resistance and erosion performance of EB-PVD thermal barrier coatings on thermal ageing. Surf. Coat. Technol. 2012, 206, 4992–4998. [Google Scholar] [CrossRef]
- Wellman, R.; Nicholls, J. On the effect of ageing on the erosion of EB-PVD TBCs. Surf. Coat. Technol. 2004, 177–178, 80–88. [Google Scholar] [CrossRef] [Green Version]
- Busso, E.P.; Qian, Z.Q. A mechanistic study of microcracking in transversely isotropic ceramic–metal systems. Acta Mater. 2006, 54, 325–338. [Google Scholar] [CrossRef]
- Schulz, U.; Saruhan, B.; Fritscher, K.; Leyens, C. Review on Advanced EB-PVD Ceramic Topcoats for TBC Applications. Int. J. Appl. Ceram. Technol. 2004, 1, 302–315. [Google Scholar] [CrossRef]
- Nicholls, J.; Lawson, K.; Johnstone, A.; Rickerby, D. Methods to reduce the thermal conductivity of EB-PVD TBCs. Surf. Coat. Technol. 2002, 151–152, 383–391. [Google Scholar] [CrossRef] [Green Version]
- Peters, M.; Leyens, C.; Schulz, U.; Kaysser, W.A. EB-PVD Thermal Barrier Coatings for Aeroengines and Gas Turbines. Adv. Eng. Mater. 2001, 3, 193–204. [Google Scholar] [CrossRef]
- Renteria, A.F.; Saruhan, B.; Schulz, U.; Raetzer-Scheibe, H.-J.; Haug, J.; Wiedenmann, A. Effect of morphology on thermal conductivity of EB-PVD PYSZ TBCs. Surf. Coat. Technol. 2006, 201, 2611–2620. [Google Scholar] [CrossRef]
- Wolfe, D.E.; Singh, J.; Miller, R.A.; Eldridge, J.I.; Zhu, D.-M. Tailored microstructure of EB-PVD 8YSZ thermal barrier coatings with low thermal conductivity and high thermal reflectivity for turbine applications. Surf. Coat. Technol. 2005, 190, 132–149. [Google Scholar] [CrossRef]
- Nicholls, J.R.; Wellman, R.G.; Deakin, M.J. Erosion of thermal barrier coatings. Mater. High Temp. 2003, 20, 207–218. [Google Scholar] [CrossRef]
- Nicholls, J.R.; Jaslier, Y.; Rickerby, D.S. Erosion of EB-PVD thermal barrier coatings. Mater. High Temp. 1998, 15, 15–22. [Google Scholar] [CrossRef]
- Liu, Y.; Ravichandran, R.; Chen, K.; Patnaik, P. Application of Machine Learning to Solid Particle Erosion of APS-TBC and EB-PVD TBC at Elevated Temperatures. Coatings 2021, 11, 845. [Google Scholar] [CrossRef]
- Fleck, N.; Zisis, T. The erosion of EB-PVD thermal barrier coatings: The competition between mechanisms. Wear 2010, 268, 1214–1224. [Google Scholar] [CrossRef]
- Ning, S.; Yu, Q.; Liu, T.; Zhang, K.; Zhang, H.; Wang, Y.; Li, Z. Influence of particle shape on erosion behavior of EB-PVD thermal barrier coatings. Ceram. Int. 2022, 48, 8627–8640. [Google Scholar] [CrossRef]
- Neilson, J.; Gilchrist, A. Erosion by a stream of solid particles. Wear 1968, 11, 111–122. [Google Scholar] [CrossRef]
- Tabakoff, W. Investigation of coatings at high temperature for use in turbomachinery. Surf. Coat. Technol. 1989, 39–40, 97–115. [Google Scholar] [CrossRef]
- Lakshmi, S.G.; Malvi, B.; Rao, D.S.; Das, D.K.; Roy, M. Comparison of erosion rate of EB-PVD and plasma sprayed TBC. Surf. Eng. 2021, 37, 1396–1403. [Google Scholar] [CrossRef]
- Sheldon, G.; Kanhere, A. An investigation of impingement erosion using single particles. Wear 1972, 21, 195–209. [Google Scholar] [CrossRef]
- Bitter, J. A study of erosion phenomena part I. Wear 1963, 6, 5–21. [Google Scholar] [CrossRef]
- Evans, A.G.; Gulden, M.E.; Rosenblatt, M. Impact damage in brittle materials in the elastic-plastic response régime. Proc. R. Soc. London. Ser. A, Math. Phys. Sci. 1978, 361, 343–365. [Google Scholar] [CrossRef]
- Slikkerveer, P.J. Mechanical Etching of Glass by Powder Blasting. Ph.D. Thesis, Technische Universiteit Eindhoven, Eindhoven, The Netherlands, 1999. [Google Scholar] [CrossRef]
- Li, C.-J.; Dong, H.; Ding, H.; Yang, G.-J.; Li, C.-X. The Correlation of the TBC Lifetimes in Burner Cycling Test with Thermal Gradient and Furnace Isothermal Cycling Test by TGO Effects. J. Therm. Spray Technol. 2017, 26, 378–387. [Google Scholar] [CrossRef]
- Gregorová, E.; Černý, M.; Pabst, W.; Esposito, L.; Zanelli, C.; Hamáček, J.; Kutzendörfer, J. Temperature dependence of Young’s modulus of silica refractories. Ceram. Int. 2015, 41, 1129–1138. [Google Scholar] [CrossRef]
- Dong, H.; Yang, G.-J.; Cai, H.-N.; Ding, H.; Li, C.-X.; Li, C.-J. The influence of temperature gradient across YSZ on thermal cyclic lifetime of plasma-sprayed thermal barrier coatings. Ceram. Int. 2015, 41, 11046–11056. [Google Scholar] [CrossRef]
- Zhang, B.; Chen, K.; Baddour, N. Stress models for electron beam-physical vapor deposition thermal barrier coatings using temperature-process-dependent model parameters. J. Eur. Ceram. Soc. 2021, 41, 5658–5674. [Google Scholar] [CrossRef]
- Zhang, B.; Chen, K.; Baddour, N. The Effect of Interfacial Roughness on Residual Stresses in Electron Beam-Physical Vapor Deposition of Thermal Barrier Coatings. Coatings 2021, 11, 341. [Google Scholar] [CrossRef]
- Thompson, J.; Clyne, T. The effect of heat treatment on the stiffness of zirconia top coats in plasma-sprayed TBCs. Acta Mater. 2001, 49, 1565–1575. [Google Scholar] [CrossRef]
- Busso, E.; Qian, Z.; Taylor, M.; Evans, H. The influence of bondcoat and topcoat mechanical properties on stress development in thermal barrier coating systems. Acta Mater. 2009, 57, 2349–2361. [Google Scholar] [CrossRef]
- Guo, S.; Kagawa, Y. Effect of loading rate and holding time on hardness and Young’s modulus of EB-PVD thermal barrier coating. Surf. Coat. Technol. 2004, 182, 92–100. [Google Scholar] [CrossRef]
- Guo, S.; Kagawa, Y. Effect of thermal exposure on hardness and Young’s modulus of EB-PVD yttria-partially-stabilized zirconia thermal barrier coatings. Ceram. Int. 2006, 32, 263–270. [Google Scholar] [CrossRef]
- Zhu, J.; Ma, K. Microstructural and mechanical properties of thermal barrier coating at 1400 °C treatment. Theor. Appl. Mech. Lett. 2014, 4, 021008. [Google Scholar] [CrossRef] [Green Version]
- Twigg, P.C.; Page, T.F. The temperature-variant hardness response of duplex TBCs. Thin Solid Films 1993, 236, 219–224. [Google Scholar] [CrossRef]
- Evans, A.G.; Clarke, D.R.; Levi, C.G. The influence of oxides on the performance of advanced gas turbines. J. Eur. Ceram. Soc. 2008, 28, 1405–1419. [Google Scholar] [CrossRef]
- Hutchinson, J.; Evans, A. On the delamination of thermal barrier coatings in a thermal gradient. Surf. Coat. Technol. 2002, 149, 179–184. [Google Scholar] [CrossRef]
- Vaßen, R.; Giesen, S.; Stöver, D. Lifetime of Plasma-Sprayed Thermal Barrier Coatings: Comparison of Numerical and Experimental Results. J. Therm. Spray Technol. 2009, 18, 835–845. [Google Scholar] [CrossRef]
- Du, Z.-Z.; Cocks, A. Constitutive models for the sintering of ceramic components—I. Material models. Acta Met. et Mater. 1992, 40, 1969–1979. [Google Scholar] [CrossRef]
- Tsoga, A.; Nikolopoulos, P. Surface and grain-boundary energies in yttria-stabilized zirconia (YSZ-8 mol%). J. Mater. Sci. 1996, 31, 5409–5413. [Google Scholar] [CrossRef]
- Cheng, B.; Zhang, Y.-M.; Yang, N.; Zhang, M.; Chen, L.; Yang, G.-J.; Li, C.-X.; Li, C.-J. Sintering-induced delamination of thermal barrier coatings by gradient thermal cyclic test. J. Am. Ceram. Soc. 2017, 100, 1820–1830. [Google Scholar] [CrossRef]
- Goldsmith, A.; Hirschhorn, H.J.; Waterman, T.E. Ceramics. In Handbook of Thermophysical Properties of Solid Materials; Pergamon Press: Oxford, UK, 1961; Volume 3. [Google Scholar]
- Simms, N.; Kilgallon, P.; Roach, C.; Oakey, J. Development of oxides at TBC—bond coat interfaces in burner rig exposures. Mater. High Temp. 2003, 20, 519–526. [Google Scholar] [CrossRef]
- Beele, W.; Marijnissen, G.; van Lieshout, A. The evolution of thermal barrier coatings—status and upcoming solutions for today’s key issues. Surf. Coat. Technol. 1999, 120–121, 61–67. [Google Scholar] [CrossRef]
- Hodge, P.E.; Stecura, S.; Gedwill, M.A.; Zaplatynsky, I.; Levine, S.R. Thermal barrier coatings: Burner rig hot corrosion test results. J. Mater. Energy Syst. 1980, 1, 47–58. [Google Scholar] [CrossRef] [Green Version]
- Kanwal, S.; Thakare, J.G.; Pandey, C.; Singh, I.; Mahapatra, M.M. Characterization of slurry-based mullite coating deposited on P91 steel welds. J. Aust. Ceram. Soc. 2019, 55, 519–528. [Google Scholar] [CrossRef]
- Thakare, J.; Pandey, C.; Mulik, R.; Mahapatra, M. Mechanical property evaluation of carbon nanotubes reinforced plasma sprayed YSZ-alumina composite coating. Ceram. Int. 2018, 44, 6980–6989. [Google Scholar] [CrossRef]
Type of Erodent | Density (Kg/m3) | Radius of Particle (μm) | Elastic Modulus (GPa) | Poisson’s Ratio |
---|---|---|---|---|
SiO2 | 2320 | 60 | 65.2 [34] | 0.17 [34] |
Fitting Parameters | Values |
---|---|
−8.99942 (I = 1) −1.49089 (I = 2) | |
126.95095 (I = 1) 9.01642 (I = 2) | |
13.9525 | |
−14.22029 (I = 1) −2.30728 (I = 2) | |
412.31215 (I = 1) 13.62966 (I = 2) | |
27.1841 | |
0.31257 | |
332.07745 | |
0.31257 | |
332.07745 |
Temperature (°C) | Impact Velocity (m/s) | Deformation Wear Kinetic Energy (m2/s2) | Cutting Wear Kinetic Energy (m2/s2) | ||
---|---|---|---|---|---|
20 | 170 | 7.90 × 105 | 0.0289 | 7.90 × 105 | 1.3452 |
910 | 300 | 1.17 × 106 | 910 | 8.33 × 106 | 1.0508 |
Fitting Parameters | Values for V = 300 m/s | Values for V = 170 m/s |
---|---|---|
9.14166 × 10−4 | 1.34675 × 10−7 | |
−3.73973 | −1.20293 | |
0.62356 | 0.70749 | |
2.76605 × 10−6 | 6.64357 × 10−7 | |
−1.96022 | −0.50085 | |
0.60787 | 0.69595 |
Temperature (°C) | Erodent | Impact Velocity (m/s) | Erosion Rates (g/kg) | Erodent | Impact Velocity (m/s) | Erosion Rates (g/kg) |
---|---|---|---|---|---|---|
RT | 40 μm alumina particles | / | / | 60 μm silica particles | 170 | 17.4 |
540 | 122 | 14.7 | / | / | ||
705 | 25.0 | |||||
815 | 25.6 | |||||
910 | / | / | 300 | 5.4 |
No# of Cycle | Temperatures (°C) | Impact Angles (°) | Impact Mass (kg) | Impact Velocity (m/s) |
---|---|---|---|---|
Determined cycle number N ranging from [10, 300] | Randomly selected T ranging from [RT, 1400] | Randomly selected α ranging from [5, 90] | Randomly selected ranging from [0, M] | Determined V: 170,300 |
No# of Cycle | Temperatures (°C) | Impact Angles (°) | Impact Mass (g) | Impact Velocity (m/s) |
---|---|---|---|---|
Determined cycle number N ranging from [10, 300] | Randomly selected T ranging from [RT, 1400] | Randomly selected α ranging from [5, 90] | Determined accumulated mass M ranging from [10, 1000] | Determined V: 300 |
No# of Cycle | Temperatures (°C) | Impact Angles (°) | Impact Mass (kg) | Impact Velocity (m/s) |
---|---|---|---|---|
Determined cycle number N ranging from [10, 300] | Randomly selected T ranging from [RT, 1400] | Determined impact angles α ranging from [5, 90] | Randomly selected ranging from [0, M] | Determined V: 300 |
No# of Cycle | Temperatures (°C) | Impact Angles (°) | Impact Mass (kg) | Impact Velocity (m/s) | Ratio of |
---|---|---|---|---|---|
Determined cycle number N ranging from [10, 300] | Randomly selected T ranging from [RT, 1400] | Randomly selected α ranging from [5, 90] | Randomly selected ranging from [0, M] | Determined V: 300 | Determined Rt ranging from [0.2, 0.67] |
No# of Cycle | Temperatures (°C) | Impact Angles (°) | Impact Mass (g) | Impact Velocity (m/s) | Ratio of |
---|---|---|---|---|---|
Determined cycle number N = 10,300 | Randomly selected T ranging from [RT, 1400] | Randomly selected α ranging from [5, 90] | Determined accumulated mass M ranging from [10, 1000] | Determined V: 300 | Determined Rt = 0.2, 0.67 |
No# of Cycle | Temperatures (°C) | Impact Angles (°) | Impact Mass (kg) | Impact Velocity (m/s) | Ratio of |
---|---|---|---|---|---|
Determined cycle number N = 10,300 | Randomly selected T ranging from [RT, 1400] | Determined impact angles α ranging from [5, 90] | Randomly selected ranging from [0, M] | Determined V: 300 | Determined Rt = 0.2, 0.67 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, B.; Chen, K.; Baddour, N. Evaluation of Solid Particle Erosion of EB-PVD TBCs under Thermal Cycling Conditions Based on a Stochastic Approach. Coatings 2023, 13, 156. https://doi.org/10.3390/coatings13010156
Zhang B, Chen K, Baddour N. Evaluation of Solid Particle Erosion of EB-PVD TBCs under Thermal Cycling Conditions Based on a Stochastic Approach. Coatings. 2023; 13(1):156. https://doi.org/10.3390/coatings13010156
Chicago/Turabian StyleZhang, Bochun, Kuiying Chen, and Natalie Baddour. 2023. "Evaluation of Solid Particle Erosion of EB-PVD TBCs under Thermal Cycling Conditions Based on a Stochastic Approach" Coatings 13, no. 1: 156. https://doi.org/10.3390/coatings13010156
APA StyleZhang, B., Chen, K., & Baddour, N. (2023). Evaluation of Solid Particle Erosion of EB-PVD TBCs under Thermal Cycling Conditions Based on a Stochastic Approach. Coatings, 13(1), 156. https://doi.org/10.3390/coatings13010156