Effect of Heat Treatment on Microstructure and Tribological Properties of Laser Cladding CeO2/Ni60 Composite Coating on 35CrMoV Steel
Abstract
:1. Introduction
2. Materials and Experimental Procedures
2.1. Materials
2.2. Coating Preparation Process
2.3. Heat Treatment Method
2.4. Detection Method
3. Results and Discussion
3.1. Macroscopic Morphology of Composite Coating
3.2. Phase Composition
3.3. Microstructures of Cladding Layer
3.4. Element Distribution Analysis
3.5. Microhardness of Cladding Layer
3.6. Wear Morphology
3.7. Friction Coefficient and Wear
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gao, Z.; Ren, H.; Geng, H.; Yu, Y.; Gao, Z.; Zhang, C. Effect of CeO2 on Microstructure and Wear Property of Laser Cladding Ni-Based Coatings Fabricated on 35CrMoV Steel. J. Mater. Eng. Perform. 2022, 31, 9534–9543. [Google Scholar] [CrossRef]
- Jiang, X.; Zhou, Y.; Shi, C.; Mao, D. Effects of Ultrasonic-Aided Quenching on the Corrosion Resistance of GB 35CrMoV Steel in Seawater Environment. Metals 2018, 8, 104. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Li, X.; Bai, J.; Zhang, T.; Xu, Y.; Yu, Y. Effects of Thermal Treatment on Microstructure and Wear Properties of Ni60/CeO2 Composite Coating 35CrMoV Steel by Laser Cladding. Coatings 2022, 12, 1575. [Google Scholar] [CrossRef]
- Gao, Y.; Tong, Y.; Guohui, L.; Lu, P.; Zhang, D. Microstructure and Mechanical Properties of Ni-Based Alloy Composite Coating on Cr12MoV by Laser Cladding. Coatings 2022, 12, 1632. [Google Scholar] [CrossRef]
- Cao, S.; Liang, J.; Wang, L.; Zhou, J. Effects of NiCr intermediate layer on microstructure and tribological property of laser cladding Cr3C2 reinforced Ni60A-Ag composite coating on copper alloy. Opt. Laser Technol. 2021, 142, 106963. [Google Scholar] [CrossRef]
- Cai, Y.; Luo, Z.; Chen, Y.; Ao, S. Influence of CeO2 on tribological behaviour of TiC/Fe-based composite coating. Surf. Eng. 2017, 33, 936–943. [Google Scholar] [CrossRef]
- Liang, J.; Yin, X.; Lin, Z.; Chen, S.; Liu, C.; Yan, S.; Dong, S. Effects of LaB6 on microstructure evolution and properties of in-situ synthetic TiC+TiBx reinforced titanium matrix composite coatings prepared by laser cladding. Surf. Coat. Technol. 2020, 403, 126409. [Google Scholar] [CrossRef]
- Quazi, M.M.; Fazal, M.A.; Haseeb, A.S.M.A.; Yusof, F.; Masjuki, H.H.; Arslan, A. Effect of rare earth elements and their oxides on tribo-mechanical performance of laser claddings: A review. J. Rare Earths 2016, 34, 549–564. [Google Scholar] [CrossRef]
- Liu, J.; Yu, H.; Chen, C.; Weng, F.; Dai, J. Research and development status of laser cladding on magnesium alloys: A review. Opt. Lasers Eng. 2017, 93, 195–210. [Google Scholar] [CrossRef]
- Chen, W.; Yang, X.; Li, X.; Chai, C.; Liu, W. Study on Microstructure and Properties of Nickel-Based Self-Lubricating Coating by Laser Cladding. Coatings 2022, 12, 753. [Google Scholar] [CrossRef]
- Shu, D.; Cui, X.; Li, Z.; Sun, J.; Wang, J.; Chen, X.; Dai, S.; Si, W. Effect of the Rare Earth Oxide CeO2 on the Microstructure and Properties of the Nano-WC-Reinforced Ni-Based Composite Coating. Metals 2020, 10, 383. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Gao, Y.; Wang, R.; Wei, D.; Cai, M.; Fu, Y. Microstructure of laser-clad Ni60 cladding layers added with different amounts of rare-earth oxides on 6063 Al alloys. J. Alloys Compd. 2018, 740, 1099–1107. [Google Scholar] [CrossRef]
- Yinghua, L.; Xuelong, P.; Jiacai, K.; Yingjun, D. Improving the microstructure and mechanical properties of laser cladded Ni-based alloy coatings by changing their composition: A review. Rev. Adv. Mater. Sci. 2020, 59, 340–351. [Google Scholar] [CrossRef]
- Liang, C.J.; Wang, C.L.; Zhang, K.X.; Liang, M.L.; Xie, Y.G.; Liu, W.J.; Yang, J.J.; Zhou, S.F. Nucleation and strengthening mechanism of laser cladding aluminum alloy by Ni-Cr-B-Si alloy powder based on rare earth control. J. Mater. Process. Technol. 2021, 294, 117145. [Google Scholar] [CrossRef]
- Wang, C.; Gao, Y.; Zeng, Z.; Fu, Y. Effect of rare-earth on friction and wear properties of laser cladding Ni-based coatings on 6063Al. J. Alloys Compd. 2017, 727, 278–285. [Google Scholar] [CrossRef]
- Oh, Y.; Han, C.H.; Wang, M.; Chun, Y.-B.; Han, H.N. Effect of rare earth oxide addition on microstructure and mechanical properties of Ni-based alloy. J. Alloys Compd. 2021, 853, 156980. [Google Scholar] [CrossRef]
- Xu, Z.; Wang, Z.; Chen, J.; Qiao, Y.; Zhang, J.; Huang, Y. Effect of Rare Earth Oxides on Microstructure and Corrosion Behavior of Laser-Cladding Coating on 316L Stainless Steel. Coatings 2019, 9, 636. [Google Scholar] [CrossRef] [Green Version]
- Lu, X.-L.; Liu, X.-B.; Yu, P.-C.; Zhai, Y.-J.; Qiao, S.-J.; Wang, M.-D.; Wang, Y.-G.; Chen, Y. Effects of heat treatment on microstructure and mechanical properties of Ni60/h-BN self-lubricating anti-wear composite coatings on 304 stainless steel by laser cladding. Appl. Surf. Sci. 2015, 355, 350–358. [Google Scholar] [CrossRef]
- Liu, L.; Xu, H.; Xiao, J.; Wei, X.; Zhang, G.; Zhang, C. Effect of heat treatment on structure and property evolutions of atmospheric plasma sprayed NiCrBSi coatings. Surf. Coat. Technol. 2017, 325, 548–554. [Google Scholar] [CrossRef]
- Pan, Y.; Cui, J.; Lei, W.; Zhou, J.; Ma, Z. Influence of Heat Treatment on the Mechanical Properties of Ni Films on 430 Stainless Steel Substrate. High Temp. Mater. Process. 2017, 36, 855–861. [Google Scholar] [CrossRef]
- Wang, S.; Zheng, Z.; Zheng, K.; Long, J.; Wang, J.; Ren, Y.; Li, Y. High temperature oxidation behavior of heat resistant steel with rare earth element Ce. Mater. Res. Express 2020, 7, 016571. [Google Scholar] [CrossRef]
- Guo, W.; Zhang, L.; Xu, C.; Chai, R.; Gao, Z.; Kogo, B.; Chizari, M.; Zhang, C.; Wang, B. Study on the wear resistance of laser cladding iron-base alloy by heat treatment. Mater. Res. Express 2018, 6, 2. [Google Scholar] [CrossRef] [Green Version]
- Gao, Z.; Ren, H.; Yuan, Y.; Gao, Z.; Liu, E.; Zhang, C. Effect of CeO(2) on the microstructure and microhardensss of laser-cladded Ni60 on 35CrMoV alloys. Micron 2021, 150, 103146. [Google Scholar] [CrossRef]
- Yang, L.; Li, Z.; Zhang, Y.; Wei, S.; Wang, Y.; Kang, Y. In-situ TiC-Al3Ti reinforced Al-Mg composites with Y2O3 addition formed by laser cladding on AZ91D. Surf. Coat. Technol. 2020, 383, 125249. [Google Scholar] [CrossRef]
- Farahmand, P.; Liu, S.; Zhang, Z.; Kovacevic, R. Laser cladding assisted by induction heating of Ni–WC composite enhanced by nano-WC and La2O3. Ceram. Int. 2014, 40, 15421–15438. [Google Scholar] [CrossRef]
Samples | C | Si | Mn | Cr | Mo | V | P | S | Cu | Fe | B | Ni |
---|---|---|---|---|---|---|---|---|---|---|---|---|
35CrMoV | 0.30–0.38 | 0.17–0.37 | 0.40–0.70 | 0.80–1.10 | 0.15–0.25 | 0.10–0.20 | ≤0.035 | ≤0.035 | ≤0.030 | — | — | ≤0.030 |
Ni60 powder | 0.8 | 4.0 | — | 15.5 | — | — | — | — | — | 15.0 | 3.5 | excess |
Spectrum | B | C | Si | Cr | Fe | Ni | Ce |
---|---|---|---|---|---|---|---|
Spec. 1 | 15.13 | 2.08 | 0.19 | 73.69 | 7.49 | 1.31 | 0.11 |
Spec. 2 | 1.10 | 2.28 | 3.11 | 15.81 | 26.72 | 50.81 | 0.19 |
Spec. 3 | 8.06 | 3.78 | 2.15 | 16.22 | 29.94 | 39.84 | 0.02 |
Spec. 4 | 0.83 | 1.25 | 2.31 | 15.51 | 35.06 | 45.34 | - |
Spec. 5 | 6.65 | 2.93 | 2.25 | 15.36 | 29.46 | 43.62 | - |
Spec. 6 | - | 4.50 | 2.14 | 13.71 | 26.23 | 57.47 | 0.14 |
Spec. 7 | 1.07 | 6.76 | 0.90 | 32.97 | 31.21 | 26.71 | 0.38 |
Spec. 8 | - | 1.62 | 3.49 | 8.56 | 30.41 | 56.06 | 0.40 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, Z.; Zhang, S.; Gao, Z.; Ren, H.; Zhang, C. Effect of Heat Treatment on Microstructure and Tribological Properties of Laser Cladding CeO2/Ni60 Composite Coating on 35CrMoV Steel. Coatings 2023, 13, 161. https://doi.org/10.3390/coatings13010161
Gao Z, Zhang S, Gao Z, Ren H, Zhang C. Effect of Heat Treatment on Microstructure and Tribological Properties of Laser Cladding CeO2/Ni60 Composite Coating on 35CrMoV Steel. Coatings. 2023; 13(1):161. https://doi.org/10.3390/coatings13010161
Chicago/Turabian StyleGao, Zhiming, Shuqing Zhang, Zhongtang Gao, Haibo Ren, and Chuanwei Zhang. 2023. "Effect of Heat Treatment on Microstructure and Tribological Properties of Laser Cladding CeO2/Ni60 Composite Coating on 35CrMoV Steel" Coatings 13, no. 1: 161. https://doi.org/10.3390/coatings13010161
APA StyleGao, Z., Zhang, S., Gao, Z., Ren, H., & Zhang, C. (2023). Effect of Heat Treatment on Microstructure and Tribological Properties of Laser Cladding CeO2/Ni60 Composite Coating on 35CrMoV Steel. Coatings, 13(1), 161. https://doi.org/10.3390/coatings13010161