High Temperature Oxidation and Oxyacetylene Ablation Properties of ZrB2-ZrC-SiC Ultra-High Temperature Composite Ceramic Coatings Deposited on C/C Composites by Laser Cladding
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Phase and Microstructure of the Coating
3.2. High Temperature Oxidation Properties of the Coating
3.3. Ablative Properties of the Coating
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Devi, G.R.; Rao, K.R. Carbon-carbon composites—An overview. Def. Sci. J. 1993, 43, 369–383. [Google Scholar] [CrossRef]
- Windhorst, T.; Blount, G. Carbon-carbon composites: A summary of recent developments and applications. Mater. Des. 1997, 18, 11–15. [Google Scholar] [CrossRef]
- Li, J.; Yang, X.; Liu, H.W.; Huang, Q.Z.; Su, Z.A. Research process of ultra-high temperature ceramics modified carbon/carbon composites for ablation resistance. Chin. J. Nonferrous Met. 2015, 25, 1731–1743. [Google Scholar]
- Fu, Q.G.; Li, H.J.; Shen, X.T.; Li, K.Z. Domestic research process of matrix modification for carbon/carbon composites. Mater. China 2011, 30, 6–12. [Google Scholar]
- Jin, X.C.; Fan, X.L.; Lu, C.S.; Wang, T.J. Advances in oxidation and ablation resistance of high and ultra-high temperature ceramics modified or coated carbon/carbon composites. J. Eur. Ceram. Soc. 2018, 38, 1–28. [Google Scholar] [CrossRef]
- Yang, X.; Huang, Q.Z.; Su, Z.A.; Chang, X. Review of recent progress on oxidation protection for C/C composites at high temperature. Aerosp. Mater. Tech. 2014, 44, 1–15. [Google Scholar]
- Wang, H.H.; Kong, J.A.; Xu, M.; Zhang, P.F.; Yang, L.; Shi, X.H.; Li, H.J. Laser ablation behavior of SiO2-Nd2O3/Si-SiC-MoSi2 coated C/C composites repaired by laser cladding. Corros. Sci. 2022, 198, 110132. [Google Scholar] [CrossRef]
- Wang, H.H.; Kong, J.A.; Ge, J.; Teng, L.; Shi, X.H.; Li, H.J. Effects of reflectivity on laser-ablation resistance of the laser-cladding repaired Nd2O3 modified SiO2 coatings on C/C composites. J. Eur. Ceram. Soc. 2021, 41, 6548–6588. [Google Scholar] [CrossRef]
- Teng, L.; Shi, X.H.; Wang, H.H.; Li, W.; Yin, X.M.; Li, H.J. A new method to improve the laser-ablation resistance of Si-SiC coating on C/C composites: Laser cladding. J. Eur. Ceram. Soc. 2022, 42, 6425–6434. [Google Scholar] [CrossRef]
- Wang, H.H.; Teng, L.; Kong, J.A.; Liu, X.S.; Shi, X.H.; Li, H.J. Enhancing anti-oxidation and thermal-radiation performance of the repaired borosilicate glass coating on C/C composites by Sm-doping. J. Materiomics 2022, 8, 417–426. [Google Scholar] [CrossRef]
- Wang, H.H.; Li, H.J.; Shi, X.H.; Liu, X.S.; Kong, J.A.; Zhou, H. Repair of SiC coating on carbon/carbon composites by laser cladding technique. Ceram. Int. 2020, 46, 19537–19544. [Google Scholar] [CrossRef]
- Eric, J.J.; Hull, R.J. Laser cladding of oxidation protection coatings on carbon-carbon composites. In Proceedings of the Laser Materials Processing Conference (ICALEO(R) 2000), Dearborn, MI, USA, 2–5 October 2000. [Google Scholar]
- Wu, Q.; Ji, X.J.; Peng, H.R.; Shen, J.; Ren, X.J. Study on compound modified ZrB2 based ultrahigh temperature oxidation resistant coatings. China Ceram. 2016, 52, 6–11. [Google Scholar]
- Lin, H.J.; Li, H.J.; Shen, Q.L.; Shi, X.H.; Feng, T.; Guo, L.J. 3C-SiC nanowires in-situ modified carbon/carbon composites and their effect on mechanical and thermal properties. Nanomaterials 2018, 8, 894. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chu, Y.H.; Fu, Q.G.; Li, H.J.; Li, K.Z. Advancement of high temperature oxidation resistant ceramic coatings for Carbon/ Carbon composites. Mater. Eng. 2010, 11, 86–91. [Google Scholar]
- Wu, W.W.; Zhang, G.J.; Kan, Y.M.; Wang, P.L. Reactive hot pressing of ZrB2-SiC-ZrC ultra high-temperature ceramics at 1800 °C. J. Am. Ceram. Soc. 2006, 89, 2967–2969. [Google Scholar]
- Zheng, Q.; Wang, X.H.; Xing, J.J.; Gu, H.; Zhang, G.J. Quantitative analysis for phase compositions of ZrB2-SiC-ZrC ultra-high temperature ceramic composites. J. Inorg. Mater. 2013, 28, 358–362. [Google Scholar] [CrossRef]
- Yang, Z.H. The Synthesis In-Situ of Metal-Ceramic Coatings Containing ZrB2 by PTA. Master Dissertation, Tianjin University, Tianjin, China, 2009. [Google Scholar]
- Liu, Y.M. Study of Preparation and Oxidation Resistance of ZrB2 Based Ceramic Coatings for C/C Composites. Master Dissertation, Dalian University of Technology, Dalian, China, 2021. [Google Scholar]
- Okamoto, H. Supplemental literature review of binary phase diagrams: Ag-Ca, Al-Yb, As-Fe, B-Zr, Co-U, Cu-Se, Cu-Th, La-Mo, Mg-Sn, Mo-Th, Sn-Ta, and Te-Ti. J. Phase Equilib. Diff. 2017, 38, 929–941. [Google Scholar] [CrossRef]
- Ping, H.; Wang, G.L.; Zhi, W. Oxidation mechanism and resistance of ZrB2-SiC composites. Corros. Sci. 2009, 51, 2724–2732. [Google Scholar]
- Kaiser, A.; Lobert, M.; Telle, R. Thermal stability of zircon (ZrSiO4). J. Eur. Ceram. Soc. 2008, 28, 2199–2211. [Google Scholar] [CrossRef]
- Arroyave, R.; Kaufman, L.; Eagar, T.W. Thermodynamic modeling of the Zr-O system. Calphad 2002, 26, 95–118. [Google Scholar] [CrossRef]
- Puchala, B.; Ven Van der, A. Thermodynamics of the Zr-O system from first-principles calculations. Phys. Rev. B 2013, 88, 094108. [Google Scholar] [CrossRef] [Green Version]
- Chen, M.H.; Puchala, B.; Ven Van der, A. High-temperature stability of δ‘-ZrO. Calphad 2015, 51, 292–298. [Google Scholar] [CrossRef] [Green Version]
- Li, H.J.; Yao, X.Y.; Zhang, Y.L.; Li, K.Z.; Guo, L.J.; Liu, L. Effect of heat flux on ablation behaviour and mechanism of C/C–ZrB2–SiC composite under oxyacetylene torch flame. Corros. Sci. 2013, 74, 265–270. [Google Scholar] [CrossRef]
Parameters | Values |
---|---|
Ablation time/s | 300 |
Oxygen pressure/MPa | 0.8 |
Acetylene pressure/MPa | 0.08 |
Nozzle to sample distance/mm | 10 |
Nozzle diameter/mm | 2 |
Angle between nozzle and sample/° | 90 |
Heat flux/KW·m−2 | 2400 |
Element (at.%) | Point 1 | Point 2 | Point 3 | Point 4 | Point 5 |
---|---|---|---|---|---|
B | 50.67 | 46.18 | 53.07 | 48.16 | 49.07 |
C | 0.57 | 10.57 | 19.14 | 8.24 | 0.54 |
O | 19.73 | 12.40 | 13.10 | 31.42 | 21.51 |
Si | - | 3.64 | - | - | - |
Zr | 29.03 | 27.22 | 14.69 | 12.18 | 28.89 |
Possible phases | ZrB2-ZrO2 | ZrB2-SiC-ZrO2 | ZrB12-ZrC-ZrO2 | ZrB12-ZrC-ZrO2 | ZrB2-ZrO2 |
Element (at.%) | Point 1 | Point 2 | Point 3 | Point 4 | Point 5 | Point 6 |
---|---|---|---|---|---|---|
B | 42.73 | 47.04 | 54.81 | 52.24 | 49.16 | 54.14 |
C | 11.43 | 0.33 | 14.91 | 20.28 | 9.93 | 22.90 |
O | 33.07 | 25.42 | 18.31 | 19.42 | 26.08 | 16.91 |
Si | 0.87 | - | 4.49 | - | 0.23 | 0.17 |
Zr | 11.91 | 27.21 | 7.48 | 8.06 | 14.60 | 5.88 |
Possible phases | ZrB12-ZrC-ZrO2 | ZrB2-ZrO2 | ZrB12-SiC-ZrO2 | ZrB12-ZrC-ZrO2 | ZrB12-ZrC-ZrO2 | ZrB12-ZrC-ZrO2 |
Element (at.%) | Point 1 | Point 2 | Point 3 |
---|---|---|---|
B | 43.64 | 48.10 | 54.76 |
C | 1.32 | 0.53 | 19.29 |
O | 11.67 | 21.94 | 18.53 |
Si | 36.63 | - | - |
Zr | 6.74 | 29.42 | 7.42 |
Possible phases | ZrB12-SiC-ZrO2 | ZrB2-ZrO2 | ZrB12-ZrC-ZrO2 |
Element (at.%) | Point 1 | Point 2 | Point 3 | Point 4 | Point 5 |
---|---|---|---|---|---|
O | 58.62 | 50.27 | 56.96 | 29.93 | 66.25 |
Si | 0.36 | 1.08 | - | - | 10.26 |
Zr | 41.03 | 48.65 | 43.04 | 70.07 | 23.49 |
Possible phases | ZrO2 | ZrO | ZrO2 | Zr2O | ZrSiO4-ZrO2 |
Element (at.%) | Point 1 | Point 2 | Point 3 | Point 4 |
---|---|---|---|---|
B | 10.04 | - | - | 12.79 |
C | 0.45 | 0.32 | 0.13 | 1.77 |
O | 67.75 | 59.62 | 56.73 | 41.29 |
Si | 2.33 | 4.11 | 13.90 | 5.91 |
Zr | 19.44 | 35.94 | 29.24 | 38.25 |
Possible phases | ZrSiO4-SiO2-ZrB2 | ZrSiO4-SiO2 | ZrSiO4-SiO2 | ZrSiO4-ZrB2-SiO2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, K.; Xia, Y.; Wang, A. High Temperature Oxidation and Oxyacetylene Ablation Properties of ZrB2-ZrC-SiC Ultra-High Temperature Composite Ceramic Coatings Deposited on C/C Composites by Laser Cladding. Coatings 2023, 13, 173. https://doi.org/10.3390/coatings13010173
Huang K, Xia Y, Wang A. High Temperature Oxidation and Oxyacetylene Ablation Properties of ZrB2-ZrC-SiC Ultra-High Temperature Composite Ceramic Coatings Deposited on C/C Composites by Laser Cladding. Coatings. 2023; 13(1):173. https://doi.org/10.3390/coatings13010173
Chicago/Turabian StyleHuang, Kaijin, Yahao Xia, and Aihua Wang. 2023. "High Temperature Oxidation and Oxyacetylene Ablation Properties of ZrB2-ZrC-SiC Ultra-High Temperature Composite Ceramic Coatings Deposited on C/C Composites by Laser Cladding" Coatings 13, no. 1: 173. https://doi.org/10.3390/coatings13010173
APA StyleHuang, K., Xia, Y., & Wang, A. (2023). High Temperature Oxidation and Oxyacetylene Ablation Properties of ZrB2-ZrC-SiC Ultra-High Temperature Composite Ceramic Coatings Deposited on C/C Composites by Laser Cladding. Coatings, 13(1), 173. https://doi.org/10.3390/coatings13010173