Electrochemical and Optical Analysis of Various Compositions of Au and Ag Layers for Blood Cancer Prognosis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Simulation Session
2.3. Ag and Au Deposition
2.4. Electrode Characterization
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Leukemia—Cancer Stat Facts. Available online: https://seer.cancer.gov/statfacts/html/leuks.html (accessed on 7 June 2022).
- Annual Report to the Nation 2021: National Trends in Cancer Death Rates. Available online: https://seer.cancer.gov/report_to_nation/infographics/trends_mortality.html (accessed on 7 June 2022).
- Stillwell, W. Chapter 14—Membrane Biogenesis: Fatty Acids. In An Introduction to Biological Membranes, 2nd ed.; Stillwell, W., Ed.; Elsevier: Amsterdam, The Netherlands, 2016; pp. 315–329. ISBN 978-0-444-63772-7. [Google Scholar]
- Akirov, A.; Masri-Iraqi, H.; Atamna, A.; Shimon, I. Low Albumin Levels Are Associated with Mortality Risk in Hospitalized Patients. Am. J. Med. 2017, 130, 1465.e11–1465.e19. [Google Scholar] [CrossRef] [Green Version]
- Wang, N.; Desai, A.; Ge, B.; Li, W.; Jin, X.; Bai, H.; Yu, K.; Ye, H. Prognostic Value of Hypoalbuminemia at Diagnosis in de Novo Non-M3 Acute Myeloid Leukemia. Leuk. Lymphoma 2020, 61, 641–649. [Google Scholar] [CrossRef]
- Doucette, K.; Percival, M.-E.; Williams, L.; Kandahari, A.; Taylor, A.; Wang, S.; Ahn, J.; Karp, J.E.; Lai, C. Hypoalbuminemia as a Prognostic Biomarker for Higher Mortality and Treatment Complications in Acute Myeloid Leukemia. Hematol. Oncol. 2021, 39, 697–706. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Z.; Li, H.; Xiao, D.; Liu, Y.; Chen, X.; Luo, S.; Ji, Y. Association between Serum Albumin and 60-Day Mortality in Chinese Hakka Patients with Non-APL Acute Myeloid Leukemia: A Retrospective Cohort Study. BMC Cancer 2022, 22, 1127. [Google Scholar] [CrossRef] [PubMed]
- Bain, B.J. Bone Marrow Aspiration. J. Clin. Pathol. 2001, 54, 657–663. [Google Scholar] [CrossRef] [PubMed]
- Hianik, T. Advances in Electrochemical and Acoustic Aptamer-Based Biosensors and Immunosensors in Diagnostics of Leukemia. Biosensors 2021, 11, 177. [Google Scholar] [CrossRef]
- Chupradit, S.; KM Nasution, M.; Rahman, H.S.; Suksatan, W.; Turki Jalil, A.; Abdelbasset, W.K.; Bokov, D.; Markov, A.; Fardeeva, I.N.; Widjaja, G.; et al. Various Types of Electrochemical Biosensors for Leukemia Detection and Therapeutic Approaches. Anal. Biochem. 2022, 654, 114736. [Google Scholar] [CrossRef]
- Nasori, N.; Farahdina, U.; Zulfa, V.; Firdhaus, M.; Aziz, I.; Darsono, D.; Cao, D.; Wang, Z.; Endarko, E.; Rubiyanto, A. A Comparison between Silver Nanosquare Arrays and Silver Thin-Films as a Blood Cancer Prognosis Monitoring Electrode Design Using Optical and Electrochemical Characterization. Nanomaterials 2021, 11, 3108. [Google Scholar] [CrossRef]
- Li, Y.; Schluesener, H.J.; Xu, S. Gold Nanoparticle-Based Biosensors. Gold Bull 2010, 43, 29–41. [Google Scholar] [CrossRef] [Green Version]
- Bhattacharjee, G.; Majumder, S.; Senapati, D.; Banerjee, S.; Satpati, B. Core-Shell Gold @silver Hollow Nanocubes for Higher SERS Enhancement and Non-Enzymatic Biosensor. Mater. Chem. Phys. 2020, 239, 122113. [Google Scholar] [CrossRef]
- Tan, P.; Li, H.; Wang, J.; Gopinath, S.C.B. Silver Nanoparticle in Biosensor and Bioimaging: Clinical Perspectives. Biotechnol. Appl. Biochem. 2021, 68, 1236–1242. [Google Scholar] [CrossRef]
- Loiseau, A.; Asila, V.; Boitel-Aullen, G.; Lam, M.; Salmain, M.; Boujday, S. Silver-Based Plasmonic Nanoparticles for and Their Use in Biosensing. Biosensors 2019, 9, 78. [Google Scholar] [CrossRef] [Green Version]
- Naresh, V.; Lee, N. A Review on Biosensors and Recent Development of Nanostructured Materials-Enabled Biosensors. Sensors 2021, 21, 1109. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Fan, X. 8—Optofluidics. In Applications of Nanoscience in Photomedicine; Hamblin, M.R., Avci, P., Eds.; Chandos Publishing: Oxford, UK, 2015; pp. 153–168. ISBN 978-1-907568-67-1. [Google Scholar]
- Mao, K.; Zhou, Z.; Han, S.; Zhou, X.; Hu, J.; Li, X.; Yang, Z. A Novel Biosensor Based on Au@Ag Core-Shell Nanoparticles for Sensitive Detection of Methylamphetamine with Surface Enhanced Raman Scattering. Talanta 2018, 190, 263–268. [Google Scholar] [CrossRef]
- Zhao, Y.; Xie, X. A Novel Electrochemical Aptamer Biosensor Based on DNAzyme Decorated Au@Ag Core-Shell Nanoparticles for Hg2+ Determination. J. Braz. Chem. Soc. 2018, 29, 232–239. [Google Scholar] [CrossRef]
- Guo, B.; Anzai, J.; Osa, T. Adsorption Behavior of Serum Albumin on Electrode Surfaces and the Effects of Electrode Potential. Chem. Pharm. Bull. 1996, 44, 800–803. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heli, H.; Sattarahmady, N.; Jabbari, A.; Moosavi-Movahedi, A.; Hakimelahi, G.; Tsai, F.-Y. Adsorption of Human Serum Albumin onto Glassy Carbon Surface—Applied to Albumin-Modified Electrode: Mode of Protein–Ligand Interactions. J. Electroanal. Chem. 2007, 610, 67–74. [Google Scholar] [CrossRef]
- Oliva, F.; Cámara, O.; Avalle, L. Adsorption of Human Serum Albumin on Electrochemical Titanium Dioxide Electrodes: Protein–Oxide Surface Interaction Effects Studied by Electrochemical Techniques. J. Electroanal. Chem. 2009, 633, 19–34. [Google Scholar] [CrossRef]
- Jung, Y.; Byun, J.; Kim, Y.-S.; Hemzal, D.; Humliček, J. Study of the Interaction between HSA and Oligo-DNA Using Total Internal Reflection Ellipsometry. J. Korean Phys. Soc. 2012, 60, 1288–1291. [Google Scholar] [CrossRef]
- McPeak, K.M.; Jayanti, S.V.; Kress, S.J.P.; Meyer, S.; Iotti, S.; Rossinelli, A.; Norris, D.J. Plasmonic Films Can Easily Be Better: Rules and Recipes. ACS Photonics 2015, 2, 326–333. [Google Scholar] [CrossRef]
- Balevicius, Z.; Baleviciute Plikusiene, I.; Tumenas, S.; Tamošaitis, L.; Stirke, A.; Makaraviciute, A.; Ramanaviciene, A. In Situ Study of Ligand-Receptor Interaction by Total Internal Reflection Ellipsometry. Thin Solid Film. 2014, 571, 744–748. [Google Scholar] [CrossRef]
- Kumar, S.; Aswal, D.K. Thin Film and Significance of Its Thickness. In Recent Advances in Thin Films; Kumar, S., Aswal, D.K., Eds.; Materials Horizons: From Nature to Nanomaterials; Springer: Singapore, 2020; pp. 1–12. ISBN 9789811561160. [Google Scholar]
- Khan, M.A.; Zhu, Y.; Yao, Y.; Zhang, P.; Agrawal, A.; Reece, P.J. Impact of Metal Crystallinity-Related Morphologies on the Sensing Performance of Plasmonic Nanohole Arrays. Nanoscale 2020, 12, 7577–7585. [Google Scholar] [CrossRef]
- González, G.B.; Okasinski, J.S.; Mason, T.O.; Buslaps, T.; Honkimäki, V. In Situ Studies on the Kinetics of Formation and Crystal Structure of In4Sn3O12 Using High-Energy x-Ray Diffraction. J. Appl. Phys. 2008, 104, 043520. [Google Scholar] [CrossRef] [Green Version]
- Yan, X.; Lin, P.; Qi, X.; Yang, L. Finnis–Sinclair Potentials for Fcc Au–Pd and Ag–Pt Alloys. Int. J. Mater. Res. 2011, 102, 381–388. [Google Scholar] [CrossRef]
- Mayerhöfer, T.; Dabrowska, A.; Schwaighofer, A.; Lendl, B.; Popp, J. Beyond Beer’s Law: Why the Index of Refraction Depends (Almost) Linearly on Concentration. ChemPhysChem 2020, 21, 707–711. [Google Scholar] [CrossRef] [PubMed]
- Wilson, T.L.; Rohlfs, K.; Hüttemeister, S. Electromagnetic Wave Propagation Fundamentals. In Tools of Radio Astronomy; Wilson, T.L., Rohlfs, K., Hüttemeister, S., Eds.; Astronomy and Astrophysics Library; Springer: Berlin/Heidelberg, Germany, 2009; pp. 19–37. ISBN 978-3-540-85122-6. [Google Scholar]
- Stephanos, J.J.; Addison, A.W. Electrons, Atoms, and Molecules in Inorganic Chemistry: A Worked Examples Approach; Academic Press: Cambridge, MA, USA, 2017; ISBN 978-0-12-811049-2. [Google Scholar]
- Radičić, R.; Maletić, D.; Blažeka, D.; Car, J.; Krstulović, N. Synthesis of Silver, Gold, and Platinum Doped Zinc Oxide Nanoparticles by Pulsed Laser Ablation in Water. Nanomaterials 2022, 12, 3484. [Google Scholar] [CrossRef]
- Shafiee, A.; Ghadiri, E.; Kassis, J.; Williams, D.; Atala, A. Energy Band Gap Investigation of Biomaterials: A Comprehensive Material Approach for Biocompatibility of Medical Electronic Devices. Micromachines 2020, 11, 105. [Google Scholar] [CrossRef] [Green Version]
- Demirkan, B.; Bozkurt, S.; Şavk, A.; Cellat, K.; Gülbağca, F.; Nas, M.S.; Alma, M.H.; Sen, F. Composites of Bimetallic Platinum-Cobalt Alloy Nanoparticles and Reduced Graphene Oxide for Electrochemical Determination of Ascorbic Acid, Dopamine, and Uric Acid. Sci. Rep. 2019, 9, 12258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- García-Miranda Ferrari, A.; Foster, C.W.; Kelly, P.J.; Brownson, D.A.C.; Banks, C.E. Determination of the Electrochemical Area of Screen-Printed Electrochemical Sensing Platforms. Biosensors 2018, 8, 53. [Google Scholar] [CrossRef] [Green Version]
- Aristov, N.; Habekost, A. Cyclic Voltammetry—A Versatile Electrochemical Method Investigating Electron Transfer Processes. World J. Chem. Educ. 2015, 3, 115–119. [Google Scholar] [CrossRef]
- Freire, R.S.; Pessoa, C.A.; Mello, L.D.; Kubota, L.T. Direct Electron Transfer: An Approach for Electrochemical Biosensors with Higher Selectivity and Sensitivity. J. Braz. Chem. Soc. 2003, 14, 230–243. [Google Scholar] [CrossRef] [Green Version]
- Xu, F.; Ren, S.; Li, J.; Bi, X.; Gu, Y. Molecular Assembly of a Durable HRP-AuNPs/PEDOT:BSA/Pt Biosensor with Detailed Characterizations. Sensors 2018, 18, 1823. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tseng, A.C.; Sakata, T. Direct Electrochemical Signaling in Organic Electrochemical Transistors Comprising High-Conductivity Double-Network Hydrogels. ACS Appl. Mater. Interfaces 2022, 14, 24729–24740. [Google Scholar] [CrossRef] [PubMed]
- Kuralay, F.; Bolat, G.; Torun, H.; Abaci, S. Electrochemical Detection of Bovine Serum Albumin via Conducting Polymer Deposited Electrode. Chem. Sens. 2013, 3, 3–6. [Google Scholar]
- Wandelt, K.; Niemantsverdriet, J.W.; Dolle, P.; Markert, K. Thermal Stability of Atomic Ag/Au and Au/Ag Interfaces on a Ru(001) Substrate. Surf. Sci. 1989, 213, 612–629. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.; Hong, S.; Lee, J.; Suh, Y.D.; Kwon, J.; Moon, H.; Kim, H.; Yeo, J.; Ko, S.H. Highly Stretchable and Transparent Supercapacitor by Ag–Au Core–Shell Nanowire Network with High Electrochemical Stability. ACS Appl. Mater. Interfaces 2016, 8, 15449–15458. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Farahdina, U.; Muliawati, A.S.; Zulfa, V.Z.; Firdhaus, M.; Aziz, I.; Suprihatin, H.; Darsono, D.; Nasori, N.; Rubiyanto, A. Electrochemical and Optical Analysis of Various Compositions of Au and Ag Layers for Blood Cancer Prognosis. Coatings 2023, 13, 186. https://doi.org/10.3390/coatings13010186
Farahdina U, Muliawati AS, Zulfa VZ, Firdhaus M, Aziz I, Suprihatin H, Darsono D, Nasori N, Rubiyanto A. Electrochemical and Optical Analysis of Various Compositions of Au and Ag Layers for Blood Cancer Prognosis. Coatings. 2023; 13(1):186. https://doi.org/10.3390/coatings13010186
Chicago/Turabian StyleFarahdina, Ulya, Amastasia Salsabila Muliawati, Vinda Zakiyatuz Zulfa, Miftakhul Firdhaus, Ihwanul Aziz, Hari Suprihatin, Darsono Darsono, Nasori Nasori, and Agus Rubiyanto. 2023. "Electrochemical and Optical Analysis of Various Compositions of Au and Ag Layers for Blood Cancer Prognosis" Coatings 13, no. 1: 186. https://doi.org/10.3390/coatings13010186
APA StyleFarahdina, U., Muliawati, A. S., Zulfa, V. Z., Firdhaus, M., Aziz, I., Suprihatin, H., Darsono, D., Nasori, N., & Rubiyanto, A. (2023). Electrochemical and Optical Analysis of Various Compositions of Au and Ag Layers for Blood Cancer Prognosis. Coatings, 13(1), 186. https://doi.org/10.3390/coatings13010186