High-Temperature Steam Oxidation of Accident-Tolerant Cr/Mo-Coated Zr Alloy at 1200–1400 °C
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Coating Deposition
2.3. Oxidation Tests under LOCA Conditions
2.4. Characterization
3. Results and Discussion
3.1. Weight Gain Measurements
3.2. Phase Composition after Oxidation
3.3. Optical Microscopy after Oxidation
3.4. Scanning Electron Microscopy after Oxidation
3.5. Cr/Mo-Coated Zr-1Nb Alloy Oxidation Analysis
4. Conclusions
- The thicknesses of the residual Cr layers of Cr/Mo-coated Zr alloy samples were 6.0 and 5.3 μm after oxidation at 1200 °C for 2000 s and 1330 °C for 720 s, respectively. The higher thicknesses of the residual Cr layers compared to the Cr-coated Zr samples indicates that the application of a molybdenum barrier sublayer (3 μm-thick) can be used to limit Cr-Zr interdiffusion during LOCA oxidation at 1200 and 1330 °C.
- LOCA oxidation at 1200–1330 °C leads to the formation of Cr-Mo and Mo-Cr interdiffusion layers at the “protective coating-barrier sublayer” and “barrier sublayer-zirconium alloy” interfaces, respectively. An increase in the oxidation time from 120 to 720 s at 1330 °C is accompanied by an increase in the Mo-Zr interdiffusion layer from 26 to 42 μm. The Cr-Mo-Zr interdiffusion layer formation with a ∼3 µm thickness is also observed.
- The weight gain of the Cr/Mo-coated Zr alloy sample is comparable with the Cr-coated Zr samples after LOCA oxidation at 1400 °C for 120 s. For ZrO2, α-Zr(O), and α-Zr(O) enriched with Cr and Mo, a Cr-Zr(Mo) interdiffusion layer with the characteristic dendritic structure of the eutectic phase is formed as a result of 1400 °C oxidation. The formation of these phases, weight gain, and significant Mo diffusion indicate the loss of sublayer barrier properties.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Su, H.; Wu, X.; Wu, L.; Zhao, S.; Zhong, Y.; Ning, Z.; Liu, N.; Yang, J. Effect of Nb Content on Microstructure, Mechanical Property, High-Temperature Corrosion and Oxidation Resistance of CrNb Coatings for Accident Tolerant Fuel Cladding. Int. J. Refract. Met. Hard Mater. 2023, 110, 106010. [Google Scholar] [CrossRef]
- Terrani, K.A. Accident Tolerant Fuel Cladding Development: Promise, Status, and Challenges. J. Nucl. Mater. 2018, 501, 13–30. [Google Scholar] [CrossRef]
- Qiu, B.; Wang, J.; Deng, Y.; Wang, M.; Wu, Y.; Qiu, S.Z. A Review on Thermohydraulic and Mechanical-Physical Properties of SiC, FeCrAl and Ti3SiC2 for ATF Cladding. Nucl. Eng. Technol. 2020, 52, 1–13. [Google Scholar] [CrossRef]
- Ott, L.J.; Robb, K.R.; Wang, D. Preliminary Assessment of Accident-Tolerant Fuels on LWR Performance during Normal Operation and under DB and BDB Accident Conditions. J. Nucl. Mater. 2014, 448, 520–533. [Google Scholar] [CrossRef]
- Wagih, M.; Spencer, B.; Hales, J.; Shirvan, K. Fuel Performance of Chromium-Coated Zirconium Alloy and Silicon Carbide Accident Tolerant Fuel Claddings. Ann. Nucl. Energy 2018, 120, 304–318. [Google Scholar] [CrossRef]
- Tang, C.; Große, M.; Ulrich, S.; Klimenkov, M.; Jäntsch, U.; Seifert, H.J.; Stüber, M.; Steinbrück, M. High-Temperature Oxidation and Hydrothermal Corrosion of Textured Cr2AlC-Based Coatings on Zirconium Alloy Fuel Cladding. Surf. Coat. Technol. 2021, 419, 127263. [Google Scholar] [CrossRef]
- Chen, H.; Wang, X.; Zhang, R. Application and Development Progress of Cr-Based Surface Coatings in Nuclear Fuel Element: I. Selection, Preparation, and Characteristics of Coating Materials. Coatings 2020, 10, 808. [Google Scholar] [CrossRef]
- Wang, X.; Liao, Y.; Xu, C.; Guan, H.; Zhu, M.; Gao, C.; Jin, X.; Pang, P.; Du, J.; Liao, B.; et al. Steam Oxidation Behavior of ZrO2/Cr-Coated Pure Zirconium Prepared by Plasma Electrolytic Oxidation Followed by Filtered Cathodic Vacuum Arc Deposition. J. Alloys Compd. 2021, 883, 160798. [Google Scholar] [CrossRef]
- Dogan, H.; Findik, F.; Oztarhan, A. Comparative study of wear mechanism of surface treated AISI 316L stainless steel. Ind. Lubr. Tribol. 2003, 55, 76–83. [Google Scholar] [CrossRef]
- Younker, I.; Fratoni, M. Neutronic Evaluation of Coating and Cladding Materials for Accident Tolerant Fuels. Prog. Nucl. Energy 2016, 88, 10–18. [Google Scholar] [CrossRef]
- Rebak, R.B. Accident-Tolerant Materials for Light Water Reactor Fuels; Elsevier: Amsterdam, The Netherlands, 2020. [Google Scholar]
- Kim, D.; Lee, H.-G.; Park, J.Y.; Kim, W.-J. Fabrication and Measurement of Hoop Strength of SiC Triplex Tube for Nuclear Fuel Cladding Applications. J. Nucl. Mater. 2015, 458, 29–36. [Google Scholar] [CrossRef]
- Yamamoto, Y.; Pint, B.A.; Terrani, K.A.; Field, K.G.; Yang, Y.; Snead, L.L. Development and Property Evaluation of Nuclear Grade Wrought FeCrAl Fuel Cladding for Light Water Reactors. J. Nucl. Mater. 2015, 467, 703–716. [Google Scholar] [CrossRef] [Green Version]
- Cheng, B.; Chou, P.; Kim, Y.-J. Evaluations of Mo-Alloy for Light Water Reactor Fuel Cladding to Enhance Accident Tolerance. EPJ Nucl. Sci. Technol. 2016, 2, 5. [Google Scholar] [CrossRef] [Green Version]
- Cheng, B.; Kim, Y.-J.; Chou, P. Improving Accident Tolerance of Nuclear Fuel with Coated Mo-Alloy Cladding. Nucl. Eng. Technol. 2016, 48, 16–25. [Google Scholar] [CrossRef] [Green Version]
- Bragg-Sitton, S. Development of Advanced Accident-Tolerant Fuels for Commercial LWRs. Nucl. News 2014, 57, 83. [Google Scholar]
- Hu, X.; Dong, C.; Wang, Q.; Chen, B.; Yang, H.; Wei, T.; Zhang, R.; Gu, W.; Chen, D. High-Temperature Oxidation of Thick Cr Coating Prepared by Arc Deposition for Accident Tolerant Fuel Claddings. J. Nucl. Mater. 2019, 519, 145–156. [Google Scholar] [CrossRef]
- Sidelev, D.V.; Poltronieri, C.; Bestetti, M.; Krinitcyn, M.G.; Grudinin, V.A.; Kashkarov, E.B. A Comparative Study on High-Temperature Air Oxidation of Cr-Coated E110 Zirconium Alloy Deposited by Magnetron Sputtering and Electroplating. Surf. Coat. Technol. 2022, 433, 128134. [Google Scholar] [CrossRef]
- Yeom, H.; Maier, B.; Johnson, G.; Dabney, T.; Lenling, M.; Sridharan, K. High Temperature Oxidation and Microstructural Evolution of Cold Spray Chromium Coatings on Zircaloy-4 in Steam Environments. J. Nucl. Mater. 2019, 526, 151737. [Google Scholar] [CrossRef]
- Yang, J.; Steinbrück, M.; Tang, C.; Große, M.; Liu, J.; Zhang, J.; Yun, D.; Wang, S. Review on Chromium Coated Zirconium Alloy Accident Tolerant Fuel Cladding. J. Alloys Compd. 2022, 895, 162450. [Google Scholar] [CrossRef]
- Duan, Z.; Yang, H.; Satoh, Y.; Murakami, K.; Kano, S.; Zhao, Z.; Shen, J.; Abe, H. Current Status of Materials Development of Nuclear Fuel Cladding Tubes for Light Water Reactors. Nucl. Eng. Des. 2017, 316, 131–150. [Google Scholar] [CrossRef]
- Park, D.J.; Kim, H.G.; Jung, Y., II; Park, J.H.; Yang, J.H.; Koo, Y.H. Behavior of an Improved Zr Fuel Cladding with Oxidation Resistant Coating under Loss-of-Coolant Accident Conditions. J. Nucl. Mater. 2016, 482, 75–82. [Google Scholar] [CrossRef]
- Brachet, J.-C.; Idarraga-Trujillo, I.; Le Flem, M.; Le Saux, M.; Vandenberghe, V.; Urvoy, S.; Rouesne, E.; Guilbert, T.; Toffolon-Masclet, C.; Tupin, M.; et al. Early Studies on Cr-Coated Zircaloy-4 as Enhanced Accident Tolerant Nuclear Fuel Claddings for Light Water Reactors. J. Nucl. Mater. 2019, 517, 268–285. [Google Scholar] [CrossRef]
- Yang, J.; Stegmaier, U.; Tang, C.; Steinbrück, M.; Große, M.; Wang, S.; Seifert, H.J. High Temperature Cr-Zr Interaction of Two Types of Cr-Coated Zr Alloys in Inert Gas Environment. J. Nucl. Mater. 2021, 547, 152806. [Google Scholar] [CrossRef]
- Brachet, J.-C.; Rouesne, E.; Ribis, J.; Guilbert, T.; Urvoy, S.; Nony, G.; Toffolon-Masclet, C.; Le Saux, M.; Chaabane, N.; Palancher, H.; et al. High Temperature Steam Oxidation of Chromium-Coated Zirconium-Based Alloys: Kinetics and Process. Corros. Sci. 2020, 167, 108537. [Google Scholar] [CrossRef]
- Kashkarov, E.; Afornu, B.; Sidelev, D.; Krinitcyn, M.; Gouws, V.; Lider, A. Recent Advances in Protective Coatings for Accident Tolerant Zr-Based Fuel Claddings. Coatings 2021, 11, 557. [Google Scholar] [CrossRef]
- Sidelev, D.V.; Ruchkin, S.E.; Syrtanov, M.S.; Kashkarov, E.B.; Shelepov, I.A.; Malgin, A.G.; Polunin, K.K.; Stoykov, K.V.; Mokrushin, A.A. Protective Cr Coatings with CrN/Cr Multilayers for Zirconium Fuel Claddings. Surf. Coat. Technol. 2022, 433, 128131. [Google Scholar] [CrossRef]
- Sidelev, D.V.; Ruchkin, S.E.; Shelepov, I.A.; Saburov, N.S.; Malgin, A.G.; Polunin, K.K.; Stoykov, K.V.; Mokrushin, A.A. Protective Cr Coatings with ZrO2/Cr Multilayers for Zirconium Fuel Claddings. Coatings 2022, 12, 1409. [Google Scholar] [CrossRef]
- Wang, X.; Guan, H.; Liao, Y.; Zhu, M.; Xu, C.; Jin, X.; Liao, B.; Xue, W.; Zhang, Y.; Bai, G.; et al. Enhancement of High Temperature Steam Oxidation Resistance of Zr–1Nb Alloy with ZrO2/Cr Bilayer Coating. Corros. Sci. 2021, 187, 109494. [Google Scholar] [CrossRef]
- Krejč’i, J.; Ševeček, M.; Kabátová, J.; Manoch, F.; Koč’i, J.; Cvrček, L.; Málek, J.; Krum, S.; Šutta, P.; Bubl’iková, P.; et al. Experimental Behavior of Chromium-Based Coatings. In Proceedings of the TopFuel 2018, Prague, Czech Republic, 30 September–4 October 2018. [Google Scholar]
- Liu, J.; Hao, Z.; Cui, Z.; Ma, D.; Lu, J.; Cui, Y.; Li, C.; Liu, W.; Xie, S.; Huang, P.; et al. Investigation of the Oxidation Mechanisms of Superlattice Cr-CrN/TiSiN-Cr Multilayer Coatings on Zircaloy Substrates under High-Temperature Steam Atmospheres. Corros. Sci. 2021, 192, 109782. [Google Scholar] [CrossRef]
- Michau, A.; Ougier, M.; Maskrot, H.; Brachet, J.C.; Guilbert, T.; Palancher, H.; Bischoff, J.; Pouillier, E. Interlayers for Cr-Coated Nuclear Fuel Claddings. In Proceedings of the NuMat2020-The Nuclear Materials Conference, Ghent, Belgium, 26–30 October 2020. [Google Scholar] [CrossRef]
- Yeom, H.; Maier, B.; Johnson, G.; Dabney, T.; Walters, J.; Sridharan, K. Development of Cold Spray Process for Oxidation-Resistant FeCrAl and Mo Diffusion Barrier Coatings on Optimized ZIRLOTM. J. Nucl. Mater. 2018, 507, 306–315. [Google Scholar] [CrossRef]
- Zhu, C.; Li, P.; Chen, C.; Tian, J.; Zeng, S.; Meng, Y.; Shen, H.; Han, X.; Zhang, H. Microstructure Evolution and Oxidation Behavior of Bi-Layer CrAl-Mo Coated Zircaloy-4 in Steam at 1200 °C and 1300 °C. Corros. Sci. 2022, 208, 110632. [Google Scholar] [CrossRef]
- Syrtanov, M.S.; Kashkarov, E.B.; Abdulmenova, A.V.; Sidelev, D. V High-Temperature Oxidation of Zr1Nb Zirconium Alloy with Protective Cr/Mo Coating. Surf. Coat. Technol. 2022, 439, 128459. [Google Scholar] [CrossRef]
- Sidelev, D.V.; Kashkarov, E.B.; Syrtanov, M.S.; Krivobokov, V.P. Nickel-Chromium (Ni–Cr) Coatings Deposited by Magnetron Sputtering for Accident Tolerant Nuclear Fuel Claddings. Surf. Coat. Technol. 2019, 369, 69–78. [Google Scholar] [CrossRef]
- Kashkarov, E.B.; Sidelev, D.V.; Rombaeva, M.; Syrtanov, M.S.; Bleykher, G.A. Chromium Coatings Deposited by Cooled and Hot Target Magnetron Sputtering for Accident Tolerant Nuclear Fuel Claddings. Surf. Coat. Technol. 2020, 389, 125618. [Google Scholar] [CrossRef]
- Peng, J. Cr-Mo Binary Phase Diagram Evaluation. Available online: https://materials.springer.com/msi/docs/sm_msi_r_20_012108_01 (accessed on 24 November 2022).
- Song, H.; Lei, J.; Xie, J.; Wu, S.; Wang, L.; Shou, W. Laser Melting Deposition of K403 Superalloy: The Influence of Processing Parameters on the Microstructure and Wear Performance. J. Alloys Compd. 2019, 805, 551–564. [Google Scholar] [CrossRef]
- y Puente, A.P.; Dickson, J.; Keiser, D.D., Jr.; Sohn, Y.H. Investigation of Interdiffusion Behavior in the Mo–Zr Binary System via Diffusion Couple Studies. Int. J. Refract. Met. Hard Mater. 2014, 43, 317–321. [Google Scholar] [CrossRef]
- Kashkarov, E.B.; Sidelev, D.V.; Syrtanov, M.S.; Tang, C.; Steinbrück, M. Oxidation Kinetics of Cr-Coated Zirconium Alloy: Effect of Coating Thickness and Microstructure. Corros. Sci. 2020, 175, 108883. [Google Scholar] [CrossRef]
- Zinkevich, M.; Mattern, N. Thermodynamic Assessment of the Mo-Zr System. J. Phase Equilibria 2002, 23, 156–162. [Google Scholar] [CrossRef]
- Farle, A.-S.; Kwakernaak, C.; van der Zwaag, S.; Sloof, W.G. A Conceptual Study into the Potential of Mn+1AXn-Phase Ceramics for Self-Healing of Crack Damage. J. Eur. Ceram. Soc. 2015, 35, 37–45. [Google Scholar] [CrossRef]
- Ohishi, Y.; Kondo, T.; Ishikawa, T.; Okada, J.T.; Watanabe, Y.; Muta, H.; Kurosaki, K.; Yamanaka, S. Physical Properties of Molten Core Materials: Zr-Ni and Zr-Cr Alloys Measured by Electrostatic Levitation. J. Nucl. Mater. 2017, 485, 129–136. [Google Scholar] [CrossRef]
- Tedmon, C.S. The Effect of Oxide Volatilization on the Oxidation Kinetics of Cr and Fe-Cr Alloys. J. Electrochem. Soc. 1966, 113, 766. [Google Scholar] [CrossRef]
- Graham, H.C.; Davis, H.H. Oxidation/Vaporization Kinetics of Cr2O3. J. Am. Ceram. Soc. 1971, 54, 89–93. [Google Scholar] [CrossRef]
- Zhang, C.; Gao, M.C.; Yang, Y.; Zhang, F. Thermodynamic Modeling and First-Principles Calculations of the Mo–O System. Calphad 2014, 45, 178–187. [Google Scholar] [CrossRef]
- Xiao, W.; Chen, H.; Liu, X.; Tang, D.; Deng, H.; Zou, S.; Ren, Y.; Zhou, X.; Lei, M. Thermal Shock Resistance of TiN-, Cr-, and TiN/Cr-Coated Zirconium Alloy. J. Nucl. Mater. 2019, 526, 151777. [Google Scholar] [CrossRef]
- Chen, Q.; Yang, H.; Wu, L.; Wu, X.; Zhu, C.; He, L.; Liu, N.; Yang, Y.; Liao, J.; Yang, J. Effect of the Ar/N2 Flow Ratio on the Microstructure, Mechanical Properties, and High-Temperature Steam Oxidation Behavior of Cr/CrxN Coatings for Accident-Tolerant Fuel Coatings. Corros. Sci. 2021, 192, 109833. [Google Scholar] [CrossRef]
Layer | Q, W/cm2 | Ub, V | js, mA/ cm2 | t, h | Tmax, °C | h, µm |
---|---|---|---|---|---|---|
Cr | 39 | −50 | 65 | 2.5 | 320 | 8 |
Mo | 39 | −50 | 55 | 1.6 | 320 | 3 |
t, s | Uncoated Zirconium Alloy [27] | Coated Zirconium Alloy | |
---|---|---|---|
Cr [27] | Cr/Mo | ||
1000 | |||
19.35 | 2.17 | 1.51 | |
2000 | |||
27.51 | 3.26 | 2.28 |
t, s | Uncoated Zirconium Alloy | Coated Zirconium Alloy | |
---|---|---|---|
Cr | Cr/Mo | ||
120 | |||
300 | |||
720 |
t, s | Uncoated Zirconium Alloy [27] | Coated Zirconium Alloy | |
---|---|---|---|
Cr [27] | Cr/Mo | ||
120 | |||
12.5 mg/cm2 | 10.1 mg/cm2 | 10.09 mg/cm2 |
Oxidation Time | Point | Cr, at.% | O, at.% | Zr, at.% | Mo, at.% |
---|---|---|---|---|---|
1000 s | 1 | 41 | 59 | - | - |
2 | 71 | 14 | - | 15 | |
3 | 23 | - | 30 | 47 | |
4 | - | - | 93 | 7 | |
2000 s | 1 | 40 | 60 | - | - |
2 | 87 | 12 | - | 1 | |
3 | 37 | - | 31 | 32 | |
4 | 3 | - | 90 | 7 |
Point | Cr, at.% | O, at.% | Zr, at.% | Mo, at.% |
---|---|---|---|---|
1 | - | 67 | 33 | - |
2 | - | 35 | 65 | - |
3 | 6 | 17 | 76 | 1 |
4 | 2 | 15 | 82 | 1 |
5 | 27 | 12 | 56 | 5 |
6 | 20 | 10 | 68 | 2 |
7 | 27 | 12 | 56 | 5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Syrtanov, M.; Kashkarov, E.; Abdulmenova, A.; Gusev, K.; Sidelev, D. High-Temperature Steam Oxidation of Accident-Tolerant Cr/Mo-Coated Zr Alloy at 1200–1400 °C. Coatings 2023, 13, 191. https://doi.org/10.3390/coatings13010191
Syrtanov M, Kashkarov E, Abdulmenova A, Gusev K, Sidelev D. High-Temperature Steam Oxidation of Accident-Tolerant Cr/Mo-Coated Zr Alloy at 1200–1400 °C. Coatings. 2023; 13(1):191. https://doi.org/10.3390/coatings13010191
Chicago/Turabian StyleSyrtanov, Maxim, Egor Kashkarov, Anastasia Abdulmenova, Kirill Gusev, and Dmitrii Sidelev. 2023. "High-Temperature Steam Oxidation of Accident-Tolerant Cr/Mo-Coated Zr Alloy at 1200–1400 °C" Coatings 13, no. 1: 191. https://doi.org/10.3390/coatings13010191
APA StyleSyrtanov, M., Kashkarov, E., Abdulmenova, A., Gusev, K., & Sidelev, D. (2023). High-Temperature Steam Oxidation of Accident-Tolerant Cr/Mo-Coated Zr Alloy at 1200–1400 °C. Coatings, 13(1), 191. https://doi.org/10.3390/coatings13010191