Kaolin-Filled Styrene-Butadiene-Based Dispersion Coatings for Paper-Based Packaging: Effect on Water, Moisture, and Grease Barrier Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Substrates
- Mondi Group (Weybridge, UK) ProVantage Komiwhite (125 g/m2), a white top kraft liner (KB);
- MetsäBoard (Espoo, Finland) MetsäBoard Pro WKL (145 g/m2), a double-coated white top kraft liner (KP).
2.2. Commercial Coatings and Experimental Coatings Formulation
- SB-B: styrene-butadiene dispersion coating with a dry solid content of 50% (on a weight basis); the formulation does not involve inorganic fillers.
- SA-B: styrene acrylate dispersion coating with a dry solid content of 46% (on a weight basis); the formulation does not involve inorganic fillers.
- HPH 39: styrene-butadiene latex, Tg ≅ 0 °C, dry solid content 54%.
2.3. Sample Preparation
2.4. Water Absorption (Cobb Test)
2.5. Moisture Permeability (Water Vapor Transmission Rate)
2.6. Grease Permeability
2.7. Scanning Electron Microscope
2.8. Spectrophotometry
2.9. Normalization
3. Results
3.1. Sample Preparation
3.2. Cobb Test
3.3. WVTR
3.4. Grease Permeability
3.5. Spectrophotometry
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix B
References
- Marinelli, A.; Diamanti, M.V.; Lucotti, A.; Pedeferri, M.P.; Del Curto, B. Evaluation of Coatings to Improve the Durability and Water-Barrier Properties of Corrugated Cardboard. Coatings 2022, 12, 10. [Google Scholar] [CrossRef]
- Sangl, R.; Werner, A.; Kogler, W.; Tietz, M. Surface Sizing and Coating. In Handbook of Paper and Board; Holik, H., Ed.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2013; pp. 745–784. ISBN 978-3-527-33184-0. [Google Scholar]
- Samyn, P. Wetting and Hydrophobic Modification of Cellulose Surfaces for Paper Applications. J. Mater. Sci. 2013, 48, 6455–6498. [Google Scholar] [CrossRef]
- Glenn, G.; Shogren, R.; Jin, X.; Orts, W.; Hart-Cooper, W.; Olson, L. Per- and Polyfluoroalkyl Substances and Their Alternatives in Paper Food Packaging. Compr. Rev. Food Sci. Food Saf. 2021, 20, 2596–2625. [Google Scholar] [CrossRef]
- Marinelli, A.; Sossini, L.; Santi, R.; Del Curto, B. Imballaggio Cellulosico Con Proprietà Barriera: Stato Dell’arte e Innovazione Dei Materiali, 1st ed.; Edizioni Dativo Srl: Milan, Italy, 2022; ISBN 9788894310931. [Google Scholar]
- Brander, J.; Thorn, I. Surface Application of Paper Chemicals; Blackie Academic and Professional: London, UK, 1997; ISBN 978-0-7514-0370-1. [Google Scholar]
- Keddie, J.L. Film Formation of Latex. Mater. Sci. Eng. R Rep. 1997, 21, 101–170. [Google Scholar] [CrossRef]
- Blackley, D.C. Latex and Paper. In Polymer Latices; Springer: Dordrecht, The Netherlands, 1997; Volume 3, pp. 434–473. [Google Scholar]
- Cepi. Paper-Based Packaging Recyclability Guidelines; Cepi: London, UK, 2019. [Google Scholar]
- CPI. Paper and Board Packaging Recyclability Guidelines; CPI: Swindon, UK, 2020. [Google Scholar]
- Marinelli, A.; Santi, R.; Del Curto, B. Linee Guida per La Facilitazione Delle Attività Di Riciclo Degli Imballaggi a Prevalenza Cellulosica, 1st ed.; CONAI: Milan, Italy, 2020; ISBN 9788894270020. [Google Scholar]
- Kimpimäki, T.; Savolainen, A.V. Barrier Dispersion Coating of Paper and Board. In Surface Application of Paper Chemicals; Brander, J., Thron, I., Eds.; Springer: Dordrecht, The Netherlands, 1997; pp. 208–228. ISBN 978-94-010-7151-2. [Google Scholar]
- Martinez-Hermosilla, G.A.; Mesic, B.; Bronlund, J.E. Relative Permeability of Barrier Dispersion Coatings Applied on Paper-Based Materials; Mathematical Modeling and Experimental Validation. J. Coatings Technol. Res. 2022, 19, 543–558. [Google Scholar] [CrossRef]
- Kugge, C.; Johnson, B. Improved Barrier Properties of Double Dispersion Coated Liner. Prog. Org. Coatings 2008, 62, 430–435. [Google Scholar] [CrossRef]
- Mesic, B.; Cairns, M.; Järnstrom, L.; Joo Le Guen, M.; Parr, R. Film Formation and Barrier Performance of Latex Based Coating: Impact of Drying Temperature in a Flexographic Process. Prog. Org. Coatings 2019, 129, 43–51. [Google Scholar] [CrossRef]
- Schuman, T.; Wikström, M.; Rigdahl, M. Dispersion Coating with Carboxylated and Cross-Linked Styrene–Butadiene Latices. 1. Effect of Some Polymer Characteristics on Film Properties. Prog. Org. Coatings 2004, 51, 220–227. [Google Scholar] [CrossRef]
- Schuman, T.; Wikström, M.; Rigdahl, M. Dispersion Coating with Carboxylated and Cross-Linked Styrene–Butadiene Latices: 2. Effects of Substrate and Polymer Characteristics on the Properties of Coated Paperboard. Prog. Org. Coatings 2004, 51, 228–237. [Google Scholar] [CrossRef]
- Schuman, T.; Adolfsson, B.; Wikström, M.; Rigdahl, M. Surface Treatment and Printing Properties of Dispersion-Coated Paperboard. Prog. Org. Coatings 2005, 54, 188–197. [Google Scholar] [CrossRef]
- Schuman, T.; Karlsson, A.; Larsson, J.; Wikström, M.; Rigdahl, M. Characteristics of Pigment-Filled Polymer Coatings on Paperboard. Prog. Org. Coatings 2005, 54, 360–371. [Google Scholar] [CrossRef]
- Bollström, R.; Tuominen, M.; Määttänen, A.; Peltonen, J.; Toivakka, M. Top Layer Coatability on Barrier Coatings. Prog. Org. Coatings 2012, 73, 26–32. [Google Scholar] [CrossRef]
- Rissa, K.; Vähä-Nissi, M.; Lepistö, T.; Savolainen, A. Talc-Filled Water-Based Barrier Coatings. Pap. Timber 2022, 84, 467–472. [Google Scholar]
- Gutierrez, J.N.; Agate, S.; Venditti, R.A.; Pal, L. Study of Tobacco-Derived Proteins in Paper Coatings. Biopolymers 2021, 112, e23425. [Google Scholar] [CrossRef] [PubMed]
- Rastogi, V.K.; Samyn, P. Bio-Based Coatings for Paper Applications. Coatings 2015, 5, 887–930. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Qian, J.; Ding, F. Emerging Chitosan-Based Films for Food Packaging Applications. J. Agric. Food Chem. 2018, 66, 395–413. [Google Scholar] [CrossRef] [PubMed]
- Cazón, P.; Vázquez, M. Applications of Chitosan as Food Packaging Materials. In Sustainable Agriculture Reviews 36; Crini, G., Lichtfouse, E., Eds.; Springer: Cham, Switzerland, 2019; pp. 81–123. [Google Scholar]
- Parreidt, T.S.; Müller, K.; Schmid, M. Alginate-Based Edible Films and Coatings for Food Packaging Applications. Foods 2018, 7, 170. [Google Scholar] [CrossRef] [Green Version]
- Coltelli, M.B.; Wild, F.; Bugnicourt, E.; Cinelli, P.; Lindner, M.; Schmid, M.; Weckel, V.; Müller, K.; Rodriguez, P.; Staebler, A.; et al. State of the Art in the Development and Properties of Protein-Based Films and Coatings and Their Applicability to Cellulose Based Products: An Extensive Review. Coatings 2015, 6, 1. [Google Scholar] [CrossRef]
- BS EN ISO 535:2014; Paper and Board. Determination of Water Absorptiveness. Cobb Method. Available online: https://bsol.bsigroup.com/Bibliographic/BibliographicInfoData/000000000030259603 (accessed on 5 January 2021).
- BS ISO 2528:2017; Sheet Materials. Determination of Water Vapour Transmission Rate (WVTR). Gravimetric (Dish) Method. Available online: https://bsol.bsigroup.com/Bibliographic/BibliographicInfoData/000000000030349864 (accessed on 3 March 2022).
- BS ISO 16532-1:2008; Paper and Board. Determination of Grease Resistance. Permeability Test. Available online: https://bsol.bsigroup.com/Bibliographic/BibliographicInfoData/000000000030164327 (accessed on 2 February 2022).
- Asbeck, W.K.; Van Loo, M. Critical Pigment Volume Relationships. Ind. Eng. Chem. 1949, 41, 1470–1475. [Google Scholar] [CrossRef]
- Lyons, A.; Reed, G. Pigmented Aqueous Barrier Coatings. TAPPI J. 2020, 19, 551–558. [Google Scholar] [CrossRef]
- Bacquet, G.; Isoard, J.-C. Synthetic Latex Binders for Paper Manufacture. In Surface Application of Paper Chemicals; Brander, J., Thorn, I., Eds.; Blackie Academic and Professional: London, UK, 1997; pp. 48–68. ISBN 978-94-010-7151-2. [Google Scholar]
- Zou, Y.; Hsieh, J.S.; Mehnert, E.; Kokoszka, J. The Effect of Pigments and Latices on the Properties of Coated Paper. Colloids Surf. A Physicochem. Eng. Asp. 2007, 294, 40–45. [Google Scholar] [CrossRef]
- Saroha, V.; Khan, H.; Raghuvanshi, S.; Dutt, D. Preparation and Characterization of PVOH/Kaolin and PVOH/Talc Coating Dispersion by One-Step Process. J. Coatings Technol. Res. 2022, 19, 1171–1186. [Google Scholar] [CrossRef]
- Zhu, Y.; Bousfield, D.; Gramlich, W.M. The Influence of Pigment Type and Loading on Water Vapor Barrier Properties of Paper Coatings before and after Folding. Prog. Org. Coatings 2019, 132, 201–210. [Google Scholar] [CrossRef]
- Andersson, C. New Ways to Enhance the Functionality of Paperboard by Surface Treatment—A Review. Packag. Technol. Sci. 2008, 21, 339–373. [Google Scholar] [CrossRef]
- CONAI Linee Guida per La Facilitazione Delle Attività Di Riciclo Degli Imballaggi a Prevalenza Cellulosica. Available online: http://www.progettarericiclo.com/docs/linee-guida-la-facilitazione-delle-attivita-di-riciclo-degli-imballaggi-prevalenza-cellulosica (accessed on 18 January 2021).
- Licciardello, F. Packaging, Blessing in Disguise. Review on Its Diverse Contribution to Food Sustainability. Trends Food Sci. Technol. 2017, 65, 32–39. [Google Scholar] [CrossRef]
- 4evergreen. Circularity by Design Guideline for Fibre-Based Packaging; 4evergreen: Brussels, Belgium, 2022. [Google Scholar]
Size | % |
---|---|
<2 μm | 62 |
<1 μm | 45 |
<0.2 μm | 10 |
Abbreviation 1 | Latex | Filler | Latex: Filler Ratio (%) |
---|---|---|---|
H39K 100 | HPH 39 | Kaolin | 100:0 |
H39K 80 | HPH 39 | Kaolin | 80:20 |
H39K 60 | HPH 39 | Kaolin | 60:40 |
H39K 40 | HPH 39 | Kaolin | 40:60 |
H40K 100 | HPH 40 | Kaolin | 100:0 |
H40K 80 | HPH 40 | Kaolin | 80:20 |
H40K 60 | HPH 40 | Kaolin | 60:40 |
H40K 40 | HPH 40 | Kaolin | 40:60 |
Substrate | Coating | ΔE* (CIE2000) | Substrate | Coating | ΔE* (CIE2000) |
---|---|---|---|---|---|
KB | UC | - | KP | UC | - |
KB | SB-B | 1.2 | KP | SB-B | 0.7 |
KB | SA-B | 0.9 | KP | SA-B | 0.8 |
KB | H39K 100 | 1.2 | KP | H39K 100 | 1.4 |
KB | H39K 80 | 1.3 | KP | H39K 80 | 1.6 |
KB | H39K 60 | 1.4 | KP | H39K 60 | 1.1 |
KB | H39K 40 | 1.8 | KP | H39K 40 | 2.2 |
KB | H40K 100 | 1.2 | KP | H40K 100 | 1.1 |
KB | H40K 80 | 1.4 | KP | H40K 80 | 1.6 |
KB | H40K 60 | 1.8 | KP | H40K 60 | 2.0 |
KB | H40K 40 | 1.7 | KP | H40K 40 | 2.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marinelli, A.; Diamanti, M.V.; Pedeferri, M.; Del Curto, B. Kaolin-Filled Styrene-Butadiene-Based Dispersion Coatings for Paper-Based Packaging: Effect on Water, Moisture, and Grease Barrier Properties. Coatings 2023, 13, 195. https://doi.org/10.3390/coatings13010195
Marinelli A, Diamanti MV, Pedeferri M, Del Curto B. Kaolin-Filled Styrene-Butadiene-Based Dispersion Coatings for Paper-Based Packaging: Effect on Water, Moisture, and Grease Barrier Properties. Coatings. 2023; 13(1):195. https://doi.org/10.3390/coatings13010195
Chicago/Turabian StyleMarinelli, Andrea, Maria Vittoria Diamanti, MariaPia Pedeferri, and Barbara Del Curto. 2023. "Kaolin-Filled Styrene-Butadiene-Based Dispersion Coatings for Paper-Based Packaging: Effect on Water, Moisture, and Grease Barrier Properties" Coatings 13, no. 1: 195. https://doi.org/10.3390/coatings13010195
APA StyleMarinelli, A., Diamanti, M. V., Pedeferri, M., & Del Curto, B. (2023). Kaolin-Filled Styrene-Butadiene-Based Dispersion Coatings for Paper-Based Packaging: Effect on Water, Moisture, and Grease Barrier Properties. Coatings, 13(1), 195. https://doi.org/10.3390/coatings13010195