Influence of Heat Treatment on Corrosion Resistance of Sn/Mg Films Formed by PVD Method on Hot-Dip Galvanized Steel
Abstract
:1. Introduction
2. Materials and Methods
2.1. Formation of Sn/Mg Films
2.2. Methods for Film Characterization
3. Results and Discussion
3.1. Morphologies, Components and Crystallinity
3.2. Salt Spray Test
3.3. Potentiodynamic Polarization Test
4. Conclusions
- With an increase in temperature, the surface morphology of the Sn/Mg films agglomerated with each other. The cross-sectional morphology changed from a granular- at non-heat to a columnar-like structure at 190 °C, and to an indistinct shape at 220 °C.
- Sn/Mg mixture areas, including Mg2Sn, were formed at over 190 °C. Additionally, locally clustered Sn/Mg sites on the top surface were identified at 220 °C.
- In the salt spray test, the red rust initiation time of the Sn/Mg film prepared at 190 °C was 960 h, which is longer than that at non-heat for 528 h or 220 °C for 480 h.
- From the polarization test, we found that the Sn/Mg film prepared at 190 °C has a lower Icorr of 1.07 and Ecorr of −1.62 , and an enhanced passive region in comparison with the film prepared at non-heat or 220 °C.
- The Sn/Mg mixture area including Mg2Sn contains Mg and Sn in a constant ratio, and their size decreases as passivation progresses, which maintains the passivation state with stability.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shreyas, P.; Panda, B.; Vishwanatha, A.D. Embrittlement of Hot-Dip Galvanized Steel: A Review. AIP Conf. Proc. 2021, 2317, 1–15. [Google Scholar] [CrossRef]
- Li, G.; Long, X. Mechanical Behavior and Damage of Zinc Coating for Hot Dip Galvanized Steel Sheet DP600. Coatings 2020, 10, 202. [Google Scholar] [CrossRef] [Green Version]
- Peng, S.; Xie, S.K.; Xiao, F.; Lu, J.T. Corrosion Behavior of Spangle on a Batch Hot-Dip Galvanized Zn-0.05Al-0.2Sb Coating in 3.5 Wt.% NaCl Solution. Corros. Sci. 2020, 163, 1–8. [Google Scholar] [CrossRef]
- Shibli, S.M.A.; Meena, B.N.; Remya, R. A Review on Recent Approaches in the Field of Hot Dip Zinc Galvanizing Process. Surf. Coatings Technol. 2015, 262, 210–215. [Google Scholar] [CrossRef]
- de Rincón, O.; Rincón, A.; Sánchez, M.; Romero, N.; Salas, O.; Delgado, R.; López, B.; Uruchurtu, J.; Marroco, M.; Panosian, Z. Evaluating Zn, Al and Al–Zn Coatings on Carbon Steel in a Special Atmosphere. Constr. Build. Mater. 2009, 23, 1465–1471. [Google Scholar] [CrossRef]
- Qiu, P.; Leygraf, C.; Odnevall Wallinder, I. Evolution of Corrosion Products and Metal Release from Galvalume Coatings on Steel during Short and Long-Term Atmospheric Exposures. Mater. Chem. Phys. 2012, 133, 419–428. [Google Scholar] [CrossRef]
- Song, G.L.; Dudney, N.J.; Li, J.; Sacci, R.L.; Thomson, J.K. The Possibility of Forming a Sacrificial Anode Coating for Mg. Corros. Sci. 2014, 87, 11–14. [Google Scholar] [CrossRef] [Green Version]
- Hosking, N.C.; Ström, M.A.; Shipway, P.H.; Rudd, C.D. Corrosion Resistance of Zinc-Magnesium Coated Steel. Corros. Sci. 2007, 49, 3669–3695. [Google Scholar] [CrossRef]
- Park, J.-H.; Ko, K.-P.; Hagio, T.; Ichino, R.; Lee, M.-H. Effect of Zn-Mg Interlayer on the Corrosion Resistance of Multilayer Zn-Based Coating Fabricated by Physical Vapor Deposition Process. Corros. Sci. 2022, 2022, 110330. [Google Scholar] [CrossRef]
- Park, G.D.; Yang, J.H.; Lee, K.H.; Kim, H.J.; Lee, S.H.; Kang, J.; Yun, Y.S.; Lee, M.H. Ultra-High Corrosion Resistance of Al-Mg-Si Film on Steel Sheet Formed by PVD Mg Coating and Heat Treatment. Corros. Sci. 2021, 192, 109829. [Google Scholar] [CrossRef]
- Thakare, J.G.; Pandey, C.; Mahapatra, M.M.; Mulik, R.S. Thermal Barrier Coatings—A State of the Art Review. Met. Mater. Int. 2021, 27, 1947–1968. [Google Scholar] [CrossRef]
- Thakare, J.G.; Pandey, C.; Mulik, R.S.; Mahapatra, M.M. Mechanical Property Evaluation of Carbon Nanotubes Reinforced Plasma Sprayed YSZ-Alumina Composite Coating. Ceram. Int. 2018, 44, 6980–6989. [Google Scholar] [CrossRef]
- Lee, M.; Bae, I.; Kwak, Y.; Moon, K. Effect of Interlayer Insertion on Adhesion Properties of Zn-Mg Thin Films on Steel Substrate by PVD Method. Curr. Appl. Phys. 2012, 12, S2–S6. [Google Scholar] [CrossRef]
- Hwang, S.H.; Okumura, T.; Kamataki, K.; Itagaki, N.; Koga, K.; Nakatani, T.; Shiratani, M. Low Stress Diamond-like Carbon Films Containing Carbon Nanoparticles Fabricated by Combining Rf Sputtering and Plasma Chemical Vapor Deposition. Jpn. J. Appl. Phys. 2020, 59, 100906. [Google Scholar] [CrossRef]
- Dan, A.; Bijalwan, P.K.; Pathak, A.S.; Bhagat, A.N. A Review on Physical Vapor Deposition-Based Metallic Coatings on Steel as an Alternative to Conventional Galvanized Coatings. J. Coat. Technol. Res. 2022, 19, 1–36. [Google Scholar] [CrossRef]
- Hwang, S.-H.; Iwamoto, R.; Okumura, T.; Kamataki, K.; Itagaki, N.; Koga, K.; Nakatani, T.; Shiratani, M. Comparison between Ar+CH4 Cathode and Anode Coupling Chemical Vapor Depositions of Hydrogenated Amorphous Carbon Films. Thin Solid Film. 2021, 729, 138701. [Google Scholar] [CrossRef]
- Hwang, S.H.; Okumura, T.; Kamataki, K.; Itagaki, N.; Koga, K.; Shiratani, M. Size and Flux of Carbon Nanoparticles Synthesized by Ar+CH4 Multi-Hollow Plasma Chemical Vapor Deposition. Diam. Relat. Mater. 2020, 109, 108050. [Google Scholar] [CrossRef]
- Jeong, J.I.; Yang, J.H.; Jung, J.H.; Lee, K.H.; Kim, H.J.; Jung, Y.H.; Kim, T.Y.; Lee, M.H.; Hwang, S.H.; Wu, P.; et al. Super Anticorrosion of Aluminized Steel by a Controlled Mg Supply. Sci. Rep. 2018, 8, 3760. [Google Scholar] [CrossRef] [Green Version]
- La, J.; Lee, S.; Hong, S. Surface & Coatings Technology Synthesis of Zn–Mg Coatings Using Unbalanced Magnetron Sputtering and Theirs Corrosion Resistance. Surf. Coat. Technol. 2014, 259, 56–61. [Google Scholar] [CrossRef]
- Park, J.H.; Hagio, T.; Kamimoto, Y.; Ichino, R.; Lee, M.H. Enhancement of Corrosion Resistance by Lamination of Mg Film on Zn-55Al-1.6Si-Coated Steel by Physical Vapor Deposition. Surf. Coat. Technol. 2020, 387, 125537. [Google Scholar] [CrossRef]
- Byun, J.M.; Bang, S.-R.; Kim, H.W.; Kim, T.-Y.; Hong, S.-J.; Kim, Y. Do Effect of Heat Treatment on Corrosion Resistance and Adhesion Property in Zn-Mg-Zn Multi-Layer Coated Steel Prepared by PVD Process. Surf. Coat. Technol. 2016, 309, 1010–1014. [Google Scholar] [CrossRef]
- Ghosh, P.; Mezbahul-Islam, M.; Medraj, M. Critical Assessment and Thermodynamic Modeling of Mg-Zn, Mg-Sn, Sn-Zn and Mg-Sn-Zn Systems. Calphad Comput. Coupling Phase Diagr. Thermochem. 2012, 36, 28–43. [Google Scholar] [CrossRef]
- Ha, H.Y.; Kang, J.Y.; Yang, J.; Yim, C.D.; You, B.S. Role of Sn in Corrosion and Passive Behavior of Extruded Mg-5 Wt%Sn Alloy. Corros. Sci. 2016, 102, 355–362. [Google Scholar] [CrossRef]
- Wang, J.; Li, Y.; Huang, S.; Zhou, X. Study of the Corrosion Behavior and the Corrosion Films Formed on the Surfaces of Mg-XSn Alloys in 3.5 Wt.% NaCl Solution. Appl. Surf. Sci. 2014, 317, 1143–1150. [Google Scholar] [CrossRef]
- Lee, M.H.; Kim, J.D.; Oh, J.S.; Yang, J.H.; Baek, S.M. Morphology and Crystal Orientation on Corrosion Resistance of Mg Thin Films Formed by PVD Method onto Zn Electroplated Substrate. Surf. Coat. Technol. 2008, 202, 5590–5594. [Google Scholar] [CrossRef]
- Jo, Y.H.; Jung, I.; Choi, C.S.; Kim, I.; Lee, H.M. Synthesis and Characterization of Low Temperature Sn Nanoparticles for the Fabrication of Highly Conductive Ink. Nanotechnology 2011, 22, 225701. [Google Scholar] [CrossRef]
- Osório, W.R.; Freire, C.M.; Garcia, A. The Role of Macrostructural Morphology and Grain Size on the Corrosion Resistance of Zn and Al Castings. Mater. Sci. Eng. A 2005, 402, 22–32. [Google Scholar] [CrossRef]
- Dutta, M.; Halder, A.K.; Singh, S.B. Morphology and Properties of Hot Dip Zn-Mg and Zn-Mg-Al Alloy Coatings on Steel Sheet. Surf. Coat. Technol. 2010, 205, 2578–2584. [Google Scholar] [CrossRef]
- Prosek, T.; Persson, D.; Stoulil, J.; Thierry, D. Composition of Corrosion Products Formed on Zn-Mg, Zn-Al and Zn-Al-Mg Coatings in Model Atmospheric Conditions. Corros. Sci. 2014, 86, 231–238. [Google Scholar] [CrossRef]
- Prosek, T.; Nazarov, A.; Goodwin, F.; Šerák, J.; Thierry, D. Improving Corrosion Stability of Zn[Sbnd]Al[Sbnd]Mg by Alloying for Protection of Car Bodies. Surf. Coat. Technol. 2016, 306, 439–447. [Google Scholar] [CrossRef]
- Greer, A.L. Diffusion and Reactions in Thin Films. Appl. Surf. Sci. 1995, 86, 329–337. [Google Scholar] [CrossRef]
- Suzuki, S.; Kakita, K. A Comparative Study of GDOES, SIMS and XPS Depth Profiling of Thin Layers on Metallic Materials. J. Surf. Anal. 2005, 12, 2–5. [Google Scholar]
- Das, S.K.; Kim, Y.M.; Ha, T.K.; Jung, I.H. Investigation of Anisotropic Diffusion Behavior of Zn in Hcp Mg and Interdiffusion Coefficients of Intermediate Phases in the Mg-Zn System. Calphad Comput. Coupling Phase Diagr. Thermochem. 2013, 42, 51–58. [Google Scholar] [CrossRef]
- Yim, C.D.; Yang, J.; Woo, S.K.; Ha, H.Y.; You, B.S. The Effects of Microstructural Factors on the Corrosion Behaviour of Mg-5Sn-XZn (X = 1, 3wt%) Extrusions. Corros. Sci. 2015, 90, 597–605. [Google Scholar] [CrossRef]
- Fu, J.W.; Yang, Y.S. Formation of the Solidified Microstructure in MgSn Binary Alloy. J. Cryst. Growth 2011, 322, 84–90. [Google Scholar] [CrossRef]
- Gualtieri, A.F. Accuracy of XRPD QPA Using the Combined Rietveld-RIR Method. J. Appl. Crystallogr. 2000, 33, 267–278. [Google Scholar] [CrossRef] [Green Version]
- Cao, F.; Shi, Z.; Song, G.L.; Liu, M.; Atrens, A. Corrosion Behaviour in Salt Spray and in 3.5% NaCl Solution Saturated with Mg(OH)2 of as-Cast and Solution Heat-Treated Binary Mg-X Alloys: X = Mn, Sn, Ca, Zn, Al, Zr, Si, Sr. Corros. Sci. 2013, 76, 60–97. [Google Scholar] [CrossRef]
- Yao, C.; Lv, H.; Zhu, T.; Zheng, W.; Yuan, X.; Gao, W. Effect of Mg Content on Microstructure and Corrosion Behavior of Hot Dipped Zn–Al–Mg Coatings. J. Alloy. Compd. 2016, 670, 239–248. [Google Scholar] [CrossRef]
- Salgueiro Azevedo, M.; Allély, C.; Ogle, K.; Volovitch, P. Corrosion Mechanisms of Zn(Mg,Al) Coated Steel: The Effect of HCO3- and NH4+ Ions on the Intrinsic Reactivity of the Coating. Electrochim. Acta 2015, 153, 159–169. [Google Scholar] [CrossRef]
- Volovitch, P.; Vu, T.N.; Allély, C.; Abdel Aal, A.; Ogle, K. Understanding Corrosion via Corrosion Product Characterization: II. Role of Alloying Elements in Improving the Corrosion Resistance of Zn-Al-Mg Coatings on Steel. Corros. Sci. 2011, 53, 2437–2445. [Google Scholar] [CrossRef]
- Kartsonakis, I.A.; Stanciu, S.G.; Matei, A.A.; Hristu, R.; Karantonis, A.; Charitidis, C.A. A Comparative Study of Corrosion Inhibitors on Hot-Dip Galvanized Steel. Corros. Sci. 2016, 112, 289–307. [Google Scholar] [CrossRef]
- Prosek, T.; Nazarov, A.; Bexell, U.; Thierry, D.; Serak, J. Corrosion Mechanism of Model Zinc-Magnesium Alloys in Atmospheric Conditions. Corros. Sci. 2008, 50, 2216–2231. [Google Scholar] [CrossRef]
- Zeng, F.L.; Wei, Z.L.; Li, J.F.; Li, C.X.; Tan, X.; Zhang, Z.; Zheng, Z.Q. Corrosion Mechanism Associated with Mg 2Si and Si Particles in Al-Mg-Si Alloys. Trans. Nonferrous Met. Soc. China 2011, 21, 2559–2567. [Google Scholar] [CrossRef]
- Diler, E.; Lescop, B.; Rioual, S.; Nguyen Vien, G.; Thierry, D.; Rouvellou, B. Initial Formation of Corrosion Products on Pure Zinc and MgZn2 Examinated by XPS. Corros. Sci. 2014, 79, 83–88. [Google Scholar] [CrossRef]
- Esmailzadeh, S.; Aliofkhazraei, M.; Sarlak, H. Interpretation of Cyclic Potentiodynamic Polarization Test Results for Study of Corrosion Behavior of Metals: A Review 1. Prot. Met. Phys. Chem. Surf. 2018, 54, 976–989. [Google Scholar] [CrossRef]
Samples | Schematic Diagram | Sn Thickness (μm) | Mg Thickness (μm) | Zn Thickness (μm) |
---|---|---|---|---|
Sn/Mg Film (As coated) | 0.8 | 0.8 | 8.4 (Hot-dip Galvanized Steel – KS D 3506:2007) | |
Mg Film | - | 1.6 | ||
Sn Film | 1.6 | - | ||
HDG (Substrate) | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hwang, S.-H.; Lee, S.-H.; Lee, M.-H. Influence of Heat Treatment on Corrosion Resistance of Sn/Mg Films Formed by PVD Method on Hot-Dip Galvanized Steel. Coatings 2023, 13, 196. https://doi.org/10.3390/coatings13010196
Hwang S-H, Lee S-H, Lee M-H. Influence of Heat Treatment on Corrosion Resistance of Sn/Mg Films Formed by PVD Method on Hot-Dip Galvanized Steel. Coatings. 2023; 13(1):196. https://doi.org/10.3390/coatings13010196
Chicago/Turabian StyleHwang, Sung-Hwa, Seung-Hyo Lee, and Myeong-Hoon Lee. 2023. "Influence of Heat Treatment on Corrosion Resistance of Sn/Mg Films Formed by PVD Method on Hot-Dip Galvanized Steel" Coatings 13, no. 1: 196. https://doi.org/10.3390/coatings13010196
APA StyleHwang, S. -H., Lee, S. -H., & Lee, M. -H. (2023). Influence of Heat Treatment on Corrosion Resistance of Sn/Mg Films Formed by PVD Method on Hot-Dip Galvanized Steel. Coatings, 13(1), 196. https://doi.org/10.3390/coatings13010196