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Abstract: Either to obtain desirable microstructures by adjusting processing parameters or to predict
the properties of a thermal barrier coating (TBC) according to its microstructure, fast and reliable quan-
titation of the microstructure is imperative. In this research, a machine-learning-based approach—a
deep convolution neural network (DCNN)—was established to accurately quantify the microstructure
of air-plasma-sprayed (APS) TBCs based on 2D images. Four scanning electron microscopy (SEM)
images (view field: 150 µm × 150 µm, image size: 3072 pixel × 3072 pixel) were taken and labeled to
train the DCNN. After training, the DCNN could recognize correctly 98.5% of the pixels in the SEM
images of typical APS TBCs. This study demonstrated that a small dataset of SEM images could be
enough to train a DCNN, making it a powerful and feasible method for quantitively characterizing
the microstructure osf APS TBCs.

Keywords: thermal barrier coatings (TBC); plasma sprayed; microstructural characterization;
machine learning; convolution neural network

1. Introduction

Air-plasma-sprayed (APS) thermal barrier coatings (TBCs) are widely used to protect
the metals in hot sections of gas-turbine engines [1]. They have a unique and complex
microstructure: impingement of molten spray particles onto substrates results in “splats”,
and the successive build-up of the “splats” results in a layered microstructure [2]. Several
types of microstructure defect exist in APS TBCs: cracks, pores, and unmelted particles [3,4].
Cracks can be further classified into two categories: intersplat cracks caused by imperfect
contacts between splats, and intrasplat cracks caused by relaxation of the quenching
stress [5]. Pores, also called globular pores in some papers, are formed by incomplete
contact or partially molten particles [6].

Both for aircraft and for industrial gas-turbine engines, APS TBCs require low thermal
conductivity, high strain tolerance, high fracture toughness, and high sintering resistance [7,8].
All these properties are influenced largely by the microstructure and have a big impact
on the lifetime of an APS TBC [9]. Therefore, investigation of the microstructure is of
great significance in the area of TBC research. Either to obtain desirable microstructures
by adjusting processing parameters or to predict the properties of an APS TBC according
to its microstructure, quantitatively characterizing the microstructures of APS TBCs is
imperative [10], and a fast and reliable characterization method will be beneficial to the
whole APS TBC research community.

Image analysis with scanning electron microscopy (SEM, Mira, TESCAN, Czech Re-
public) images plays a crucial role in the quantitative characterization of the microstructures
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of APS TBCs, due to its feasibility and reliability [3,10,11]. Figure 1 illustrates the proce-
dures of conventional image analysis [10,12]. First, thresholding of a grayscale SEM image
(Figure 1A) is performed, which yields a binary image (Figure 1B) wherein microstructural
defects (e.g., equiaxed pores and cracks) are separated from the coating material. Thresh-
olding is effective because the gray values of microstructural features are usually lower
than those of the coating material. Second, morphological filtering of the opening operation
is performed on the binary image, which can separate cracks (Figure 1C) from equiaxed
pores (Figure 1D). That opening operation can perform such segmentation by relying on
the fact that cracks are usually thinner than equiaxed pores.
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Although the above-mentioned image analysis method has been widely used, both 
the thresholding and the opening operations have inherent issues. For thresholding, some 
defects—for example, the equiaxed pores indicated by the circles in Figure 1A—can 
hardly be recognized if they have gray values close to the coating material. In opening 
operations, the protrusions of some equiaxed pores are often classified as cracks (indicated 
by the arrows in Figure 1C). In addition to these issues, the conventional image analysis 
method for APS TBCs is based on explicit programming. Therefore, specific code must be 
developed if a certain type of microstructure—for example, unmelted regions—needs to 
be recognized, which is possibly difficult to realize. 

Figure 1. Images illustrating the procedures of conventional images analysis for SEM images of APS
TBCs. (A) gray-scale BSE image, (B) binary image with all pores, (C) binary image with cracks and
(D) binary image with equiaxed pores. The circles in (A) indicate pores whose gray values are
close to the coating material; the squares indicate unmelted regions. The arrow in (A) indicates
an equiaxed pore, some of which tend to be classified as cracks using an opening operation. The
arrow in (C) indicate an equiaxed pore’s protrusions that were wrongly classified as cracks during
opening operation.

Although the above-mentioned image analysis method has been widely used, both
the thresholding and the opening operations have inherent issues. For thresholding, some
defects—for example, the equiaxed pores indicated by the circles in Figure 1A—can hardly
be recognized if they have gray values close to the coating material. In opening operations,
the protrusions of some equiaxed pores are often classified as cracks (indicated by the
arrows in Figure 1C). In addition to these issues, the conventional image analysis method
for APS TBCs is based on explicit programming. Therefore, specific code must be developed
if a certain type of microstructure—for example, unmelted regions—needs to be recognized,
which is possibly difficult to realize.

Recently, machine learning—an approach to realizing artificial intelligence—has be-
come increasingly important in materials science and engineering [13,14]. It has been
applied in research areas such as property prediction, discovery and design of materi-
als, characterization of materials, knowledge extraction via text mining, and molecular
simulation [13]. Even in the area of TBC research, the last few years have witnessed its
applications [15–21]. Previous studies have demonstrated that some machine learning
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models (e.g., random forest and convolution neural network) can be used to analyze optical
microscopy images [22,23]. Compared with conventional image analysis, machine learning
does not need explicit code for recognizing a certain microstructure. Feeding SEM and
labeled images into a proper machine learning model may realize automatic recognition.
So far, however, whether machine learning can realize pixel-wise automatic microstructure
recognition of SEM images of APS TBCs is still unclear. In this research, a deep convolution
neural network (DCNN) model was built. Four SEM images were taken and labeled to
train the model. After training, the model’s performance was evaluated, and the predicted
images were examined in detail, through which possible reasons for wrong recognitions
were analyzed.

2. Research Methodology

The core components of the model and the training process are illustrated in Figure 2.
First, input (SEM images) and true targets (labeled SEM images) are needed, because
supervised learning was adopted in this research. The input is fed into the model. Next,
the model makes a prediction, which is then compared with the true target. Taking the
prediction and the true target as inputs, the loss function computes a loss score, which
quantifies the difference between them. Based on the score, the optimizer adjusts the
model’s parameters in the correct direction, aiming at lowering the score in the next
training loop. The above depicts one training loop. After all the training images have been
used, one epoch finishes. After many epochs, the prediction might be very close to the
true target.
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Figure 2. Schematic showing the core components of the machine learning model and the train-
ing process.

2.1. Dataset Preparation
2.1.1. Acquiring SEM Images

Four backscatter electron (BSE) SEM images were taken on the cross-section of a
yttria-stabilized zirconia (YSZ) APS TBC. As can be seen in Figure 3A, this APS TBC
contains not only typical APS TBC microstructures—cracks and equiaxed pores—but also
unmelted regions. The view field of the BSE image is 150 µm × 150 µm, and the image size
is 3072 pixels × 3072 pixels. The numerical resolution reaches 0.046 µm/pixel, which is
enough for quantitatively characterizing the microstructure of plasma-sprayed TBCs [12].
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Figure 3. (A) Initial grayscale SEM image, (B) manually labeled image, (C) cropped grayscale image
used for training, and (D) manually labeled image of the image in (C). Cracks, equiaxed pores,
unmelted regions, and YSZ are indicated by red, green, blue, and white, respectively.

2.1.2. Labeling SEM Images

The task of the model is pixel-wise semantic segmentation—to classify each pixel in the
images—so pixel-wise labeling is warranted. The four SEM images contain 3072 × 3072 × 4
= 37,748,736 pixels. If all the pixels were labeled by hand, it would be a labor-heavy and
time-consuming process. In addition to manual labeling, therefore, automatic labeling was
also adopted. Figure 4 shows the labeling process used in this research. First, the unmelted
regions were manually labeled using Photoshop software (version Photoshop CC2018).
Second, non-YSZ regions (also referred to as defects in this research, including cracks,
equiaxed pores, and unmelted regions) were automatically extracted from the remaining
region using thresholding. However, some non-YSZ regions could not be extracted; these
problematic regions were restored manually. Afterwards, isolated equiaxed pores were
automatically identified based on their shapes. Next, the remaining equiaxed pores (e.g.,
those connected to other types of microstructures) were manually selected using Photoshop
software. Finally, the labeled images were obtained. A truly labeled SEM image is shown
in Figure 3B. After labeling, the area percentages of different classes of microstructures
were calculated, as shown in Figure 5. One point worth stressing here is that the total area
percentage of the three classes of defects is not necessarily equal to the porosity of an APS
TBC, because the unmelted regions also contain YSZ (see the region indicated by the square
in Figure 1A). However, the two are equal when no unmelted regions are involved.
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2.1.3. Dataset Splitting

The image dataset was split into a training set, a validation set, and a test set. The
training set was used to train the model. During the training process, the performance of
the model on training data will always improve, but this does not mean that the model will
perform well on data it has never seen. Therefore, a validation set was reserved; its purpose
is to monitor how the model performs on new data. After training, the final performance
of the model was evaluated using the test set. For dataset splitting, each of the initial
3072-pixel-wide images was divided into 144 256-pixel-wide images, so an image dataset
containing 576 small images was obtained. The dataset was then split into three subsets
according to Table 1.

Table 1. The numbers of small images in the training, validation, and testing sets.

Dataset Image Number

Training 462
Validation 57

Test 57

2.2. Model Building
2.2.1. Workspace Setup

The DCNN model was built using Python in a Jupyter notebook. To enable fast exper-
imentation with deep neural networks, Keras—a widely used deep learning framework—
was used.

2.2.2. Model Architecture

Figure 6 shows the overall architecture of the DCNN model; its detailed specifications
are presented in Table 2. The model has an encoder–decoder structure with skip connections.
It is composed of 23 layers (Table 2), including convolution layers, pooling layers, up-
sampling layers, and dropout layers. The convolution layers are to extract features of the
images. They are composed of a certain number of kernels, whose parameters (commonly
known as weights) are random values before training and need to be adjusted by model
training. Pooling layers perform down-sampling operations, aiming at reducing the sizes
of feature-maps to process and induce spatial-filter hierarchies. Contrary to pooling layers,
up-sampling layers increase the sizes of feature-maps. Dropout layers were introduced to
the model because they can reduce overfitting.
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Table 2. The detailed specifications of the DCNN.

No. Layer Kernel Parameter Input Size Output Size

1 Input - 0 (N, 256, 256, 3) (N, 256, 256, 3)
2 Convolution (3, 3) × 32 896 (N, 256, 256, 3) (N, 256, 256, 32)
3 Dropout - 0 (N, 256, 256, 32) (N, 256, 256, 32)
4 Convolution (3, 3) × 32 9248 (N, 256, 256, 32) (N, 256, 256, 32)
5 Pooling - 0 (N, 256, 256, 32) (N, 128, 128, 32)
6 Convolution (3, 3) × 64 18,496 (N, 128, 128, 32) (N, 128, 128, 64)
7 Dropout - 0 (N, 128, 128, 64) (N, 128, 128, 64)
8 Convolution (3, 3) × 64 36,928 (N, 128, 128, 64) (N, 128, 128, 64)
9 Pooling - 0 (N, 128, 128, 64) (N, 64, 64, 64)
10 Convolution (3, 3) × 128 73,856 (N, 64, 64, 64) (N, 64, 64, 128)
11 Dropout - 0 (N, 64, 64, 128) (N, 64, 64, 128)
12 Convolution (3, 3) × 128 147,584 (N, 64, 64, 128) (N, 64, 64, 128)
13 Up sampling - 0 (N, 64, 64, 128) (N, 128, 128, 128)

14 Concatenate - 0 (N, 128, 128, 128)
(N, 128, 128, 64) (N, 128, 128, 192)

15 Convolution (3, 3) × 64 110,656 (N, 128, 128, 192) (N, 128, 128, 64)
16 Dropout - 0 (N, 128, 128, 64) (N, 128, 128, 64)
17 Convolution (3, 3) × 64 36,928 (N, 128, 128, 64) (N, 128, 128, 64)
18 Up sampling - 0 (N, 128, 128, 64) (N, 256, 256, 64)

19 Concatenate - 0 (N, 256, 256, 64)
(N, 256, 256, 32) (N, 256, 256, 96)

20 Convolution (3, 3) × 32 27,680 (N, 256, 256, 96) (N, 256, 256, 32)
21 Dropout - 0 (N, 256, 256, 32) (N, 256, 256, 32)
22 Convolution (3, 3) × 32 9248 (N, 256, 256, 32) (N, 256, 256, 32)
23 Convolution (1, 1) × 4 132 (N, 256, 256, 32) (N, 256, 256, 4)

Total trainable parameters: 471,652

2.2.3. Loss and Metrics

There are four classes of microstructures in the SEM images, and most of the pixels are
YSZ, so the task of the model is an imbalanced multiclass segmentation problem. Therefore,
the generalized Dice loss [24], which is effective for this kind of segmentation, was used in
this research.

Metrics are functions that are used to intuitively judge a model’s performance. Three
of the most commonly used metrics for semantic segmentation tasks were adopted in this
research: (pixel) accuracy, mean (pixel) accuracy, mean intersection over union (mean IoU).
Accuracy is the percentage of pixels in an image that are classified correctly. Accuracy can
be computed using the following equation:

accuracy =
∑k

i=1 Nii

∑k
i=1 ∑k

j=1 Nij
(1)

where k is the number of classes in a certain image, Nij is the number of pixels of class i
predicted to be class j. Classes 1–4 represent cracks, equiaxed pores, unmelted regions, and
YSZ, respectively.

Accuracy is one of the easiest to understand conceptually. However, it is not an ideal
metric when class imbalance—one class dominating the image—occurs. For example, sup-
pose that the area of the non-YSZ region (including cracks, equiaxed pores, and unmelted
regions) were 5%; the accuracy could reach up to 95% if all the pixels were classified as
YSZ. To compensate for this issue, mean accuracy was introduced. It is the average of the
accuracies of all the classes. The accuracy for class i is the number of pixels of a class that
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are predicted correctly, divided by the number of all the pixels of the class in the labeled
image, whose formula is as follows:

accuracyi =
Nii

∑k
j=1 Nij

(2)

Based on this equation, the mean accuracy can be calculated using the following formula:

mean accuracy =
1
k ∑k

i=0 accuracyi (3)

where k is the number of classes in a certain image. Mean interaction-over-union (IoU) is
also a popular metric when class imbalance occurs. It is the average of the IoUs of all the
classes. IoU is stricter than accuracy. For class i, it is the number of pixels of a class that are
predicted correctly divided by the sum of the number of all the pixels of the class in the
labeled image and the number of pixels that are wrongly classified as class i. The following
formula shows the way calculating it:

IoUi =
Nii

∑k
j=1 Nij +

(
∑k

j=1 Nji − Nii

) (4)

Based on this equation, the mean IoU can be calculated using the following formula:

mean IoU =
1
k ∑k

i=1 IoUi (5)

2.3. Model Training

The model was trained using four graphic processing units (GPU, NVIDIA Tesla V100
32 GB) for 100 epochs, and the loss scores were recorded after each epoch.

3. Results
3.1. Evolution of the Model during the Training Process

Figure 7 shows the evolutions of the losses (the generalized Dice loss) during training.
Overall, the losses changed significantly during the first 15 epochs, and then changed slowly
in the following epochs. The training loss kept decreasing till the end. The validation
loss stopped improving from about the 83ed epoch, indicating that the model began to
overfit and would not obtain better results on never-before-seen data with more adjustment.
Therefore, 100 epochs are enough for training the model. The model with the lowest loss
represented the best model and was used for the following analysis.
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3.2. Model’s Performance on All the Test Images

Figure 8 presents about half of the images predicted by the trained model, together
with the initial grayscale images and the manually labeled images. These images give an
overall visual impression of the model’s performance. As can be seen in this figure, in most
cases, the predicted images are very similar to the labeled images.
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ages were selected. The accuracy for each image is presented below each grayscale image. 

Figure 8. Images predicted by the model, together with the initial grayscale images, and the manually
labeled images. These images were selected this way: all the predicted images were ranked according
to accuracy, and then the even-numbered images were selected. The accuracy for each image is
presented below each grayscale image. (A–Z,a) Images predicted by the model, together with the
initial grayscale images, and the manually labeled images. These images were selected this way: all
the predicted images were ranked according to accuracy, and then the even-numbered images were
selected. The accuracy for each image is presented below each grayscale image.

Figure 9A shows the metrics of the trained model calculated based on the 57 test
images. The accuracy reached up to 97.0%, meaning that only 3.0% of pixels in the grayscale
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images were wrongly predicted. The mean accuracy and mean IOU dropped to 80.1% and
71.4%, respectively. The reason for this is that the accuracies of cracks, equiaxed pores, and
unmelted regions were not high enough, as can be seen in Figure 9B.
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The data in Figure 9A,B were obtained based on small images (256 pixels × 256 pixels,
12.5 µm × 12.5 µm), but sometimes evaluations on small images can be misleading. To
illustrate, assume that there is only one test image which contains all the 57 test im-
ages. Then, the model’s performance was evaluated using this large hypothetical image
(1933 pixel × 1933 pixel, 94 µm × 94 µm). The results are shown in Figure 9C,D. As can
be seen in Figure 9C, the accuracy did not change, but both the mean accuracy and mean
IoU increased slightly. In Figure 9D, note that the unmelted accuracy increases from 83.0%
(Figure 9B) to 90.8%. This indicates that for the 57 test images, the images resulting in
high unmelted accuracy tended to contain large areas of unmelted regions, which in turn
means that a larger fraction of unmelted region pixels can be recognized if they are in larger
unmelted regions. The same phenomenon occurred for equiaxed pores. The comparison
between Figure 9B,D indicates that the size of the test image plays an important role in the
model evaluation process, and the metrics evaluated using the test images whose sizes are
closer to a usual size may be more representative.

In addition to pixel-level microstructure recognition, sometimes a trained model may
also be used to calculate the area percentages of different microstructures. Figure 10 shows
the true and predicted area percentages of different microstructures in the test images. It
is shown that for some test images, the predicted area percentages of cracks (Figure 10A)
and equiaxed pores (Figure 10B) deviate far from the true area percentages. In contrast, the
predicted area percentage of the defect for each image is almost equal to the true value.
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Figure 10. True and predicted area percentages of different microstructures in the test images:
(A) crack, (B) equiaxed pore, (C) unmelted region, and (D) defect.

The large difference between true and predicted values for crack and equiaxed pore
may have been caused by the small image size (256 pixels × 256 pixels, 12.5 µm × 12.5 µm),
which is unlikely to be used in practice.

The model was also evaluated using the aforementioned hypothetical image
(1933 pixel × 1933 pixel, 94 µm × 94 µm), and the results are shown in Figure 11. For this
large image, the trained model exhibited good ability of estimating the area percentages of
different microstructures.
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3.3. Model’s Performance on Typical APS TBC Images

It can be deduced from Figure 5 that some test images contain larger unmelted regions
than usual, so the model’s performance in Section 3.2 is indeed not representative enough of
typical APS TBCs. To obtain more representative data, test images having area percentages
of unmelted regions larger than 1% were removed, by which 39 typical APS TBC images
remained and were used to evaluate the model. The results are shown in Figure 12.
The accuracy reached up to 98.5%, and the crack accuracy increased to 82.6% (75.4% in
Figure 9B). Note that the unmelted accuracy decreased to 0.0%, meaning that no unmelted
region was successfully recognized, presumably because the features of unmelted regions
become vague such areas are too small.
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Figure 12. (A,B) Metrics of the trained model evaluated using 39 more typical APS TBC images
selected from all the 57 test images: (A) Overall metrics and (B) accuracy for each class of microstruc-
ture; the error bars represent standard deviations. (C,D) Metrics of the trained model evaluated using
one hypothetical image containing all 39 more typical APS TBC images: (A) overall metrics and
(B) accuracy for each class of microstructure.

Figure 12C,D present the metrics of the model evaluated using one hypothetical
image (1599 pixels × 1599 pixels, 78 µm × 78 µm) containing all 39 test images. The
accuracy is the same as that in Figure 12A. However, the mean accuracy and mean IoU
are significantly lower; the reason is that no unmelted region pixels were successfully
recognized (Figure 12D: unmelted accuracy = 0.0%). Despite the decreases in the mean
accuracy and the mean IoU, accuracies of typical microstructures (cracks, equiaxed pores,
and YSZ) did not decline; in particular, the equiaxed accuracy increased from 64.2% to
74.5%, reaching the same value as that in Figure 9D.

Figure 13 shows the true and predicted area percentages of different microstructures in
the 39 typical APS TBC images. Compared with Figure 10, it seems that the model exhibits
better performance when evaluating the area percentages of different microstructures.
Figure 14 shows the data for the large hypothetical image containing all 39 test images.
For this large image, the trained model also exhibited a good ability to estimate the area
percentages of different microstructures.
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4. Discussion

Although the overall pixel accuracy of the model can reach up to 97.0%, the accuracies
for some classes are still not high enough. Possible reasons are discussed in this section.
Figure 15 shows the predicted amount of each class of microstructure in a hypothetical
image containing all 57 test images. For YSZ, the model has very high accuracy, such
that only a tiny fraction (0.3% + 0.2% + 0.2% = 0.7%) of YSZ was predicted as other
classes. Non-negligible fractions of the non-YSZ classes can be wrongly predicted as YSZ,
accounting for ~30%, ~50%, and ~60% of the wrong predictions of the cracks, equiaxed
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pores, and unmelted regions, respectively. The most likely reason is that the all the three
non-YSZ classes are immediately next to YSZ, but sometimes the boundaries between YSZ
and non-YSZ regions are difficult to precisely locate at the pixel level.
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Figure 15. Predicted amount each class of microstructure in a hypothetical image containing all
57 test images.

In addition to YSZ, cracks tended to be wrongly predicted as equiaxed pores, accounting
for as many as ~60% of the wrong predictions. Conversely, equiaxed pores also tended to
be wrongly predicted as cracks, accounting for ~30% of the wrong predictions. A detailed
examination of the predicted image revealed that there are two common situations in which
misclassifications between cracks and equiaxed pores can occur. The first is that some cracks
next to the unmelted regions tend to be predicted as equiaxed pores, as can be seen in
Figure 16. The second occurred when cracks were linked to equiaxed pores. As can be seen
in Figure 17, the arrow points to an equiaxed pore, but the model classified it as a crack.
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Figure 16. Test image for which cracks were wrongly predicted as equiaxed pores. (A) The grayscale
image with wrong predictions are marked by purple, (B) the labeled image, (C) the initial grayscale
image The arrow indicates a crack next to an unmelted region that was wrongly predicted as an
equiaxed pore, and (D) the predicted image.
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Figure 17. The lowest-accuracy (87.0%) test image (A), in which wrong predictions are marked by
purple, together with the labeled image (B), the initial grayscale image (C) (violet solid rectangle
indicates a region where wrong predictions occurred due to wrong label, violet dashed square
indicates a region where an equiaxed pore and cracks are connected, circle indicates a region where
both the wrong prediction and the label seem to be reasonable), and the predicted image (D) (arrow
indicates an equiaxed pore that was wrongly predicted as a crack).

In addition to the routine wrong predictions, there were also other types of wrong
predictions that are worth noting. First, although some predictions are wrong, a comparison
of the predicted image with the labeled image reveals that the model seems to be more
correct. For example, the region in the rectangle in Figure 17 is unmelted, and the model
predicted it as unmelted (Figure 17D), but the region was labeled as cracked and YSZ
(Figure 17B). Such “wrong” predictions are actually caused by labeling errors. Therefore, it
is expected the model’s performance will be further improved by minimizing labeling error.

Second, sometimes both the wrong prediction and the label seem to be reasonable. For
example, the defect in the circle in Figure 17 was labeled as a crack, but the model predicted
it as an equiaxed pore. Connections between equiaxed pores and cracks are very common
in APS TBCs. In this research, manual labeling was used to separate them. For example,
the coarse part of the defect in the dashed square in Figure 17C was labeled as equiaxed
pores. Therefore, predicting the defect in the circle as an equiaxed pore is also reasonable.

The above analysis shows that the misclassification between cracks and equiaxed
pores is an important factor causing wrong predictions. One reason is that so far there
are no widely accepted rigorous definitions of cracks and equiaxed pores, so sometimes it
is hard to determine what a pixel belongs to, even for a human expert, during the image
annotation process. In such situations, misclassification between crack and equiaxed pores
can hardly be avoided.

In addition to image-related factors, model configuration may also play a significant
role in influencing the model’s performance. The study is only a preliminary attempt to
assess the possibility of utilizing a machine-learning-based model to quantitively character-
ize the microstructure of APS TBCs, so only one specific model was adopted. To obtain a
high-performance model, future work will investigate the influence of model configuration
(e.g., model architecture and loss function) on the model’s performance. Additionally,
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once a high-performance model has been obtained, a comparative study of the model and
conventional image analysis method will then be conducted.

5. Summary

This research aimed to answer a key question: whether machine learning can realize
pixel-wise automatic microstructure recognition of SEM images of APS TBCs. To an-
swer this question, a machine-learning-based model—a deep convolution neural network
(DCNN)—was established. Four SEM images of APS TBCs (containing not only cracks and
equiaxed pores, but also unmelted regions) were taken and labeled for training the model.
The results showed that the (pixel) accuracy of the trained model reached up to 97.0%—that
is, 97.0% of the pixels in the SEM images can be recognized correctly; for SEM images
of typical APS TBCs (containing less unmelted regions), the accuracy increased to 98.5%.
Despite the high overall accuracy, the accuracies for some classes of microstructure were
not high enough. Possible reasons were analyzed. It was found that wrong predictions
were mainly due to the misclassification between YSZ and non-YSZ, and between cracks
and equiaxed pores. The major finding of this research is that a small dataset of SEM images
could be enough to train a DCNN, which may provide a powerful and feasible method for
quantitively characterizing the microstructures of APS TBCs.
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