The Influence of High-Temperature Helium and the Amount of Revert Material on the Material Properties of Inconel 738
Abstract
:1. Introduction
2. Materials and Methods
2.1. Test Material
2.2. Exposure to He Gas
2.3. Mechanical Testing
2.4. Microstructure Investigation
3. Results
3.1. Crystallographic Analysis by SEM–EBSD
3.2. Microstructure and Chemical Change Evaluation by SEM-EDX
3.3. Microstructure and Chemical Change Evaluation by X-ray Diffraction Measurements
3.4. Mechanical Testing
3.4.1. Tensile Tests
3.4.2. Vickers Microhardness Testing
3.4.3. Nanoindentation Measurements
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Was, G.S.; Petti, D.; Ukai, S.; Zincle, S. Materials for future nuclear energy systems. J. Nucl. Mater. 2019, 527, 151837. [Google Scholar] [CrossRef]
- Yvon, P.; Carré, F. Structural materials challenges for advanced reactor systems. J. Nucl. Mater. 2009, 385, 217–222. [Google Scholar] [CrossRef]
- Natesan, K.; Purohit, A.; Tam, S.W. Materials Behavior in HTGR environments, Argonne. 2003. Available online: www.ntis.gov (accessed on 5 December 2022).
- IAEA. Gas turbine power conversion systems for modular HTGRs. In Proceedings of the Report of a Technical Commitee Meeting, Palo Alto, CA, USA, 14–16 November 2000; pp. 21–44. [Google Scholar]
- World Nuclear Association. Generation IV Systems, (n.d.). Available online: https://www.world-nuclear.org/information-library/nuclear-fuel-cycle/nuclear-power-reactors/generation-iv-nuclear-reactors.aspx (accessed on 5 December 2022).
- Berka, J.; Matcha, J.; Černý, M.; Víden, I.; Sus, F.; Hájek, P. New experimental device for VHTR structural material testing and helium coolant chemistry investigation—High-temperature helium loop in NRI Řež. Nucl. Eng. Des. 2012, 251, 203–207. [Google Scholar] [CrossRef]
- Berka, J.; Hlinčík, T.; Víden, I.; Hudský, T.; Vít, J. The design and utilization of a high-temperature helium loop and other facilities for the study of advanced gas-cooled reactors in the Czech Republic. Prog. Nucl. Energy 2015, 85, 156–163. [Google Scholar] [CrossRef]
- Generation IV International Forum, GIF R&D outlook for Generation IV nuclear energy. Nucl. Energy 2009. Available online: https://www.gen-4.org/gif/upload/docs/application/pdf/2013-09/gif_rd_outlook_for_generation_iv_nuclear_energy_systems.pdf (accessed on 5 December 2022).
- Ford, D.A. The Development of Gas Turbine Materials, 1st ed.; Applied Science Publishers Ltd.: London, UK, 1981. [Google Scholar] [CrossRef]
- De Barbadillo, J.J. Nickel-base superalloys; physical metallurgy of recycling. Metall. Trans. A 1983, 14, 329–341. [Google Scholar] [CrossRef]
- Cabet, C.; Duprey, B. Long-term oxidation resistance of alloys for gas-cooled reactors. Nucl. Eng. Des. 2012, 251, 139–145. [Google Scholar] [CrossRef]
- Christ, H.J.; Künecke, U.; Meyer, K.; Sockel, H.G. High-temperature corrosion of the nickel-based alloy Inconel 617 in helium containing small amounts of impurities. Mater. Sci. Eng. 1987, 87, 161–168. [Google Scholar] [CrossRef]
- Wan, H.; Ding, Z.; Wang, J.; Yin, Y.; Guo, Q.; Gong, Y.; Zhao, Z.; Yao, X. Effects of helium ion irradiation on the high-temperature oxidation resistance of Inconel 718 alloy. Surf. Coat. Technol. 2019, 363, 34–42. [Google Scholar] [CrossRef]
- Kim, W.G.; Park, J.Y.; Lee, G.G.; Hong, S.D.; Kim, Y.W. Temperature effect on the creep behavior of alloy 617 in air and helium environments. Nucl. Eng. Des. 2014, 271, 291–300. [Google Scholar] [CrossRef]
- El-Awadi, G.A.; Abdel-Samad, S.; Elshazly, E.S. Hot corrosion behavior of Ni-based Inconel 617 and Inconel 738 superalloys. Appl. Surf. Sci. 2016, 378, 224–230. [Google Scholar] [CrossRef]
- Davydov, D.I.; Kazantseva, N.V.; Vinogradova, N.I.; Ezhov, I.V.; Stepanova, N.N. Analysis of the grain boundary microstructure and degradation in a gas turbine blade. Int. Sci. J. Sci. Tech. Union Mech. Eng. 2017, 3, 126–129. [Google Scholar]
- Ojo, O.A.; Chaturvedi, M.C. On the role of liquated γ′ precipitates in weld heat-affected zone microfissuring of a nickel-based superalloy. Mater. Sci. Eng. A 2005, 403, 77–86. [Google Scholar] [CrossRef]
- Ramakrishnan, A.; Dinda, G.P. Direct laser metal deposition of Inconel 738. Mater. Sci. Eng. A 2019, 740–741, 1–13. [Google Scholar] [CrossRef]
- Wangyao, P.; Polsilapa, S.; Promboopha, A.; Srigiofun, P.; Srihakulung, O. Effect of Al addition in cast nickel-base superalloys, Inconel-738 on microstructures and oxidation behaviors at 900 °C and 1000 °C. Key Eng. Mater. 2015, 656–657, 39–44. [Google Scholar] [CrossRef]
- Wei, J.; Ye, Y.; Sun, Z.; Liu, L.; Zou, G. Control of the kerf size and microstructure in Inconel 738 superalloy by femtosecond laser beam cutting. Appl. Surf. Sci. 2016, 370, 364–372. [Google Scholar] [CrossRef]
- Kazantseva, N.; Davidov, D.; Vinogradova, N.; Ezhov, I.; Stepanova, N. Analysis of phase transformations in Inconel 738C alloy after regenerative heat treatment. IOP Conf. Ser. Mater. Sci. Eng. 2018, 324, 012001. [Google Scholar] [CrossRef]
- Ola, O.T.; Ojo, O.; Wanjara, P.; Chaturvedi, M. Crack-free welding of IN738 by linear friction welding. Adv. Mater. Res. 2011, 278, 446–453. [Google Scholar] [CrossRef]
- Ola, O.T.; Ojo, O.A.; Chaturvedi, M.C. Role of filler alloy composition on laser arc hybrid weldability of nickel-base IN738 superalloy. Mater. Sci. Technol. 2014, 30, 1461–1469. [Google Scholar] [CrossRef]
- Bozza, F.; Bolelli, G.; Giolli, C.; Giorgetti, A.; Lusvarghi, L.; Sassatelli, P.; Scrivani, A.; Candeli, A.; Thoma, M. Diffusion mechanisms and microstructure development in pack aluminizing of Ni-based alloys. Surf. Coat. Technol. 2014, 239, 147–159. [Google Scholar] [CrossRef]
- Cade, B.G.; Caley, W.F.; Richards, N.L. Comparison of oxidation performance of two nickel-base superalloys for turbine applications. Can. Metall. Q. 2014, 53, 460–468. [Google Scholar] [CrossRef]
- Mueller, F.; Scholz, A.; Berger, C. Creep crack behaviour of a coarse grain nickel-base superalloy. Mater. High Temp. 2011, 28, 103–108. [Google Scholar] [CrossRef]
- Štamborská, M.; Losertová, M.; Galacz, R.; Konečná, K.; Horsák, L. Influence of hydrogen on the strains distribution of in 738 LC superalloy. In Proceedings of the Metal 2014—23rd International Conference on Metallurgy and Materials, Brno, Czech Republic, 21–23 May 2014; pp. 1375–1380. [Google Scholar]
- Steven, R.A.; Flewitt, P.E.J. Microstructural changes which occur during isochronal heat treatment of the nickel-base superalloy IN-738. J. Mater. Sci. 1978, 13, 367–376. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, H.; Xu, L.; Xu, J.; Ren, X.; Chen, X. Cracking mechanism and susceptibility of laser melting deposited Inconel 738 superalloy. Mater. Des. 2019, 183, 108105. [Google Scholar] [CrossRef]
- Linn, S.; Scholz, A.; Oechsner, M.; Berger, C.; Luesebrink, O. Evaluation of property scatter of Ni-base alloy in 738 LC. Mater. Sci. Eng. A 2011, 528, 4676–4682. [Google Scholar] [CrossRef]
- Rosenthal, D.R.; West, R. Continuous γ′ precipitation in directionally solidified IN738 LC alloy. Mater. Sci. Technol. 1999, 15, 1387–1394. [Google Scholar] [CrossRef]
- Graham, L.W. Corrosion of metallic materials in HTR-helium environments. J. Nucl. Mater. 1990, 171, 76–83. [Google Scholar] [CrossRef]
- Oliver, W.C.; Pharr, G.M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 1992, 7, 1564–1583. [Google Scholar] [CrossRef]
- Dressler, M.; Nofz, M.; Dorfel, I.; Saliwan-Neumann, R. Diffusion of Cr, Fe, and Ti ions from Ni-base alloy Inconel-718 into a transition alumina coating. Thin Solid Films 2012, 520, 4344–4349. [Google Scholar] [CrossRef]
- Ellingham, H.J.T. Reducibility of oxides and sulphides in metallurgical processes. J. Soc. Chem. Ind. 1944, 63, 125. [Google Scholar] [CrossRef]
- Gleeson, B. 1.09—Thermodynamics and Theory of External and Internal Oxidation of Alloys. In Shreir’s Corrosion; Elsevier: Amsterdam, The Netherlands, 2010; Volume 1, pp. 180–194. [Google Scholar] [CrossRef]
- Sidhu, R.K.; Ojo, O.A.; Chaturvedi, M.C. Weld cracking in directionally solidified Inconel 738 superalloy. Can. Metall. Q. 2007, 46, 415–424. [Google Scholar] [CrossRef]
- Luer, K.; DuPont, J.; Marder, A.; Skelonis, C. Corrosion fatigue of alloy 625 weld claddings in combustion environments. Mater. High Temp. 2001, 18, 11–19. [Google Scholar] [CrossRef]
- DuPont, J.N. The influence of solid-state diffusion on microstructural development during solidification. Defect Diffus. Forum 2007, 266, 157–169. [Google Scholar] [CrossRef]
- Zýka, J.; Andršová, I.; Podhorná, B.; Hrbáček, K. Mechanical properties and microstructure of IN738LC nickel superalloy castings. Mater. Sci. Forum 2014, 782, 437–440. [Google Scholar] [CrossRef]
Alloy | C | Cr | Ni | Co | Mo | Ti | Al | W | Ta | Nb | Zr |
---|---|---|---|---|---|---|---|---|---|---|---|
Inconel 738 | 0.11 | 16 | base | 8.5 | 1.75 | 3.45 | 3.45 | 2.6 | 1.75 | 0.85 | 0.035 |
Gas | CH4 | CO | H2 | H2O | Helium |
---|---|---|---|---|---|
Concentration [vppm] | 100 | 500 | 100 | 5–10 | Bal. |
Partial pressure [Pa] | 10 | 50 | 10 | 0.5–1 | Bal. |
Material IN738 | HV0.1—Cross-Section | HV0.1—Longitudinal |
---|---|---|
50R as received | 422 (±20) | 414 (±12) |
50R after He exposure | 401 (±20) | 390 (±16) |
100R as received | 390 (±30) | 407 (±18) |
100R after He exposure | 375 (±10) | 375 (±19) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marušáková, D.; Corrêa, C.A.; Aparicio, C.; Libera, O.; Berka, J.; Vilémová, M.; Gávelová, P. The Influence of High-Temperature Helium and the Amount of Revert Material on the Material Properties of Inconel 738. Coatings 2023, 13, 45. https://doi.org/10.3390/coatings13010045
Marušáková D, Corrêa CA, Aparicio C, Libera O, Berka J, Vilémová M, Gávelová P. The Influence of High-Temperature Helium and the Amount of Revert Material on the Material Properties of Inconel 738. Coatings. 2023; 13(1):45. https://doi.org/10.3390/coatings13010045
Chicago/Turabian StyleMarušáková, Daniela, Cinthia Antunes Corrêa, Claudia Aparicio, Ondřej Libera, Jan Berka, Monika Vilémová, and Petra Gávelová. 2023. "The Influence of High-Temperature Helium and the Amount of Revert Material on the Material Properties of Inconel 738" Coatings 13, no. 1: 45. https://doi.org/10.3390/coatings13010045
APA StyleMarušáková, D., Corrêa, C. A., Aparicio, C., Libera, O., Berka, J., Vilémová, M., & Gávelová, P. (2023). The Influence of High-Temperature Helium and the Amount of Revert Material on the Material Properties of Inconel 738. Coatings, 13(1), 45. https://doi.org/10.3390/coatings13010045