Ionic Mobility and Charge Carriers Recombination Analyzed in Triple Cation Perovskite Solar Cells
Abstract
:1. Introduction
2. Materials and Methods
3. Characterization Techniques
3.1. Open Circuit Voltage Decay Measurements
3.2. Equivalent Circuit in PSpice
- The first section illustrates the diode and the photogenerated current.
- The intermediate section contains passive components indicating the bulk capacitance and the free charge carrier resistance to recombine and transport, where Rrec refers to the reverse transfer resistance for the recombination of electrons in the solar cells, Cbulk represents the global capacitance of perovskite and all types of electric charge storage in the perovskite solar cell, including the geometric ones, and Rt corresponds to the transport resistance of the carriers.
- The last section includes the bulk and accumulation ionic resistances, the ionic accumulation capacitance and a diode that produces the asymmetric behavior at the time of capacitor discharge, where Ribulk represents the resistance to ion transport of the perovskite material, Cacc is the capacitance formed as a result of the accumulation of ions at the interfaces formed by electron and hole transport materials and perovskite, and Riacc modifies its resistivity depending on the accumulated ions at interface.
3.3. Ion Migration Fitting in Photovoltage Measurements
4. Results and Discussion
4.1. Morphological and Optical Characterization
4.2. Current Density–Voltage (J–V)
4.3. OCVD Measurements
4.4. Equivalent Circuit in PSpice
4.5. Ion Mobility Fitting
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Almora, O.; Baran, D.; Bazan, G.C.; Berger, C.; Cabrera, C.I.; Catchpole, K.R.; Erten-Ela, S.; Guo, F.; Hauch, J.; Ho-Baillie, A.W.Y.; et al. Device performance of emerging photovoltaic materials (version 1). Adv. Energy Mater. 2021, 11, 2002774. [Google Scholar] [CrossRef]
- Stranks, S.D.; Eperon, G.E.; Grancini, G.; Menelaou, C.; Alcocer, M.J.P.; Leijtens, T.; Herz, L.M.; Petrozza, A.; Snaith, H.J. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 2013, 342, 341–344. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Wu, Y.; Cai, B.; Ma, Q.; Zheng, X.; Zhang, W.H. Solution- Processable Perovskite Solar Cells toward Commercialization: Progress and Challenges. Adv. Funct. Mater. 2019, 29, 1807661. [Google Scholar] [CrossRef]
- D’Innocenzo, V.; Kandada, A.R.S.; De Bastiani, M.; Gandini, M.; Petrozza, A. Tuning the light emission properties by band gap engineering in hybrid lead halide perovskite. J. Am. Chem. Soc. 2014, 136, 17730–17733. [Google Scholar] [CrossRef]
- Wang, R.; Mujahid, M.; Duan, Y.; Wang, Z.K.; Xue, J.; Yang, Y. A review of perovskites solar cell stability. Adv. Funct. Mater. 2019, 29, 1808843. [Google Scholar] [CrossRef]
- Yang, W.S.; Park, B.-W.; Jung, E.H.; Jeon, N.J.; Kim, Y.C.; Lee, D.U.; Shin, S.S.; Seo, J.; Kim, E.K.; Seok, J.H.N.A.I. Iodide management in formamidinium-lead-halide–based perovskite layers for efficient solar cells. Science 2019, 356, 1376–1379. [Google Scholar] [CrossRef]
- Bi, D.; Tress, W.; Dar, M.I.; Gao, P.; Luo, J.; Renevier, C.; Schenk, K.; Abate, A.; Giordano, F.; Baena, J.-P.C.; et al. Efficient luminescent solar cells based on tailored mixed-cation perovskites. Sci. Adv. 2016, 2, e1501170. [Google Scholar] [CrossRef]
- Baena, J.P.C.; Steier, L.; Tress, W.; Saliba, M.; Neutzner, S.; Matsui, T.; Giordano, F.; Jacobsson, T.J.; Kandada, A.R.S.; Zakeeruddin, S.M.; et al. Highly efficient planar perovskite solar cells through band alignment engineering. Energy Environ. Sci. 2015, 8, 2928–2934. [Google Scholar] [CrossRef]
- Saliba, M.; Matsui, T.; Seo, J.-Y.; Domanski, K.; Correa-Baena, J.-P.; Nazeeruddin, M.K.; Zakeeruddin, S.M.; Tress, W.; Abate, A.; Hagfeldt, A.; et al. Cesium-containing triple cation perovskite solar cells: Improved stability, reproducibility and high efficiency. Energy Environ. Sci. 2016, 9, 1989–1997. [Google Scholar] [CrossRef]
- Saliba, M.; Matsui, T.; Domanski, K.; Seo, J.-Y.; Ummadisingu, A.; Zakeeruddin, S.M.; Correa-Baena, J.-P.; Tress, W.; Abate, A.; Hagfeldt, A.; et al. Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance. Science 2016, 354, 206–209. [Google Scholar] [CrossRef]
- Torres, J.; Sanchez-Diaz, J.; Rivas, J.M.; de la Torre, J.; Zarazua, I.; Esparza, D. Electrical properties and JV modeling of perovskite (CH3NH3PbI3) solar cells after external thermal exposure. Sol. Energy 2021, 222, 95–102. [Google Scholar] [CrossRef]
- Xing, G.; Mathews, N.; Sun, S.; Lim, S.S.; Lam, Y.M.; Gr, M.; Mhaisalkar, S.; Sum, T.C. Long-range balanced electron-and hole- transport lengths in organic-inorganic CH3NH3PbI3. Science 2013, 342, 344–347. [Google Scholar] [CrossRef] [PubMed]
- Steirer, K.X.; Schulz, P.; Teeter, G.; Stevanovic, V.; Yang, M.; Zhu, K.; Berry, J.J. Defect tolerance in methylammonium lead triiodide perovskite. ACS Energy Lett. 2016, 1, 360–366. [Google Scholar] [CrossRef]
- Yin, W.-J.; Shi, T.; Yan, Y. Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber. Appl. Phys. Lett. 2014, 104, 063903. [Google Scholar] [CrossRef]
- Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 2009, 131, 6050–6051. [Google Scholar] [CrossRef]
- Polman, A.; Knight, M.; Garnett, E.C.; Ehrler, B.; Sinke, W.C. Photovoltaic materials: Present efficiencies and future challenges. Science 2016, 352, aad4424. [Google Scholar] [CrossRef]
- Jiang, Q.; Chu, Z.; Wang, P.; Yang, X.; Liu, H.; Wang, Y.; Yin, Z.; Wu, J.; Zhang, X.; You, J. Planar-structure perovskite solar cells with efficiency beyond 21%. Adv. Mater. 2017, 29, 1703852. [Google Scholar] [CrossRef]
- Snaith, H.J.; Abate, A.; Ball, J.M.; Eperon, G.E.; Leijtens, T.; Noel, N.K.; Stranks, S.D.; Wang, J.T.-W.; Wojciechowski, K.; Zhang, W. Anomalous hysteresis in perovskite solar cells. J. Phys. Chem. Lett. 2014, 5, 1511–1515. [Google Scholar] [CrossRef]
- Nandal, V.; Nair, P.R. Predictive modeling of ion migration induced degradation in perovskite solar cells. ACS Nano 2017, 11, 11505–11512. [Google Scholar] [CrossRef]
- Bowring, A.R.; Bertoluzzi, L.; O’Regan, B.C.; McGehee, M.D. Reverse bias behavior of halide perovskite solar cells. Adv. Energy Mater. 2018, 8, 1702365. [Google Scholar] [CrossRef]
- Gottesman, R.; Lopez-Varo, P.; Gouda, L.; Jimenez-Tejada, J.A.; Hu, J.; Tirosh, S.; Zaban, A.; Bisquert, J. Dynamic phenomena at perovskite/electron-selective contact interface as interpreted from photovoltage decays. Chem 2016, 1, 776–789. [Google Scholar] [CrossRef]
- Daboczi, M.; Hamilton, I.; Xu, S.; Luke, J.; Limbu, S.; Lee, J.; McLachlan, M.A.; Lee, K.; Durrant, J.R.; Baikie, I.D.; et al. Origin of open-circuit voltage losses in perovskite solar cells investigated by surface photovoltage measurement. ACS Appl. Mater. Interfaces 2019, 11, 46808–46817. [Google Scholar] [CrossRef] [PubMed]
- Moia, D.; Gelmetti, I.; Calado, P.; Fisher, W.; Stringer, M.; Game, O.; Hu, Y.; Docampo, P.; Lidzey, D.; Palomares, E.; et al. Ionic-to-electronic current amplification in hybrid perovskite solar cells: Ionically gated transistor-interface circuit model explains hysteresis and impedance of mixed conducting devices. Energy Environ. Sci. 2019, 12, 1296–1308. [Google Scholar] [CrossRef]
- Belisle, R.A.; Nguyen, W.H.; Bowring, A.R.; Calado, P.; Li, X.; Irvine, S.J.C.; McGehee, M.D.; Barnes, P.R.F.; O’Regan, B.C. Interpretation of inverted photocurrent transients in organic lead halide perovskite solar cells: Proof of the field screening by mobile ions and determination of the space charge layer widths. Energy Environ. Sci. 2017, 10, 192–204. [Google Scholar] [CrossRef]
- Tress, W.; Marinova, N.; Moehl, T.; Zakeeruddin, S.M.; Nazeeruddin, M.K.; Gr, M. Understanding the rate-dependent J–V hysteresis; slow time component, and aging in CH3NH3PbI3 perovskite solar cells: The role of a compensated electric field. Energy Environ. Sci. 2015, 8, 995–1004. [Google Scholar] [CrossRef]
- Eames, C.; Frost, J.M.; Barnes, P.R.; O’regan, B.C.; Walsh, A.; Islam, M.S. Ionic transport in hybrid lead iodide perovskite solar cells. Nat. Commun. 2015, 6, 1–8. [Google Scholar] [CrossRef]
- Weber, S.A.L.; Hermes, I.M.; Gort, S.-H.T.-C.C.; Bergmann, V.W.; Gilson, L.; Hagfeldt, A.; Graetzel, M.; Tress, W.; Berger, R. How the formation of interfacial charge causes hysteresis in perovskite solar cells. Energy Environ. Sci. 2018, 11, 2404–2413. [Google Scholar] [CrossRef]
- Calado, P.; Telford, A.M.; Bryant, D.; Li, X.; Nelson, J.; O’Regan, B.C.; Barnes, P.R.F. Evidence for ion migration in hybrid perovskite solar cells with minimal hysteresis. Nat. Commun. 2016, 7, 1–10. [Google Scholar] [CrossRef]
- Frost, J.M.; Walsh, A. What is moving in hybrid halide perovskite solar cells? Acc. Chem. Res. 2016, 49, 528–535. [Google Scholar] [CrossRef]
- Ebadi, F.; Aryanpour, M.; Mohammadpour, R.; Taghavinia, N. Coupled ionic-electronic equivalent circuit to describe asymmetric rise and decay of photovoltage profile in perovskite solar cells. Sci. Rep. 2019, 9, 1–9. [Google Scholar]
- Zaban, A.; Greenshtein, M.; Bisquert, J. Determination of the electron lifetime in nanocrystalline dye solar cells by open-circuit voltage decay measurements. ChemPhysChem 2003, 4, 859–864. [Google Scholar] [CrossRef] [PubMed]
- Baumann, A.; Tvingstedt, K.; Heiber, M.C.; Väth, S.; Momblona, C.; Bolink, H.J.; Dyakonov, V. Persistent photovoltage in methylammonium lead iodide perovskite solar cells. Appl. Mater. 2014, 2, 081501. [Google Scholar] [CrossRef]
- Bertoluzzi, L.; Sanchez, R.S.; Liu, L.; Lee, J.-W.; Mas-Marza, E.; Han, H.; Park, N.-G.; Mora-Sero, I.; Bisquert, J. Cooperative kinetics of depolarization in CH 3 NH 3 PbI 3 perovskite solar cells. Energy Environ. Sci. 2015, 2, 910–915. [Google Scholar] [CrossRef]
- Lopez-Varo, P.; Jim, J.A.; Garcıa-Rosell, M.; Ravishankar, S.; Garcia-Belmonte, G.; Bisquert, J.; Almora, O. Device physics of hybrid perovskite solar cells: Theory and experiment. Adv. Energy Mater. 2015, 8, 1702772. [Google Scholar] [CrossRef]
- Wang, Q. Fast voltage decay in perovskite solar cells caused by depolarization of perovskite layer. J. Phys. Chem. C 2015, 122, 4822–4827. [Google Scholar] [CrossRef]
- Sakhatskyi, K.; John, R.A.; Guerrero, A.; Tsarev, S.; Sabisch, S.; Das, T.; Matt, G.J.; Yakunin, S.; Cherniukh, I.; Kotyrba, M.; et al. Assessing the drawbacks and benefits of ion migration in lead Halide perovskites. ACS Energy Lett. 2022, 7, 3401–3414. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhou, Z.; Chen, M.; Zong, Y.; Huang, J.; Pang, S.; Padture, N.P. Doping and alloying for improved perovskite solar cells. J. Mater. Chem. A 2016, 4, 17623–17635. [Google Scholar] [CrossRef]
- Guerrero, A.; You, J.; Aranda, C.; Kang, Y.S.; Garcia-Belmonte, G.; Zhou, H.; Bisquert, J.; Yang, Y. Interfacial degradation of planar lead halide perovskite solar cells. ACS Nano 2016, 10, 218–224. [Google Scholar] [CrossRef]
- Griffiths, D.J. Introduction to electrodynamics, American Association of Physics Teachers. Phys. Teach. 2005, 73, 574. [Google Scholar]
- Kim, H.P.; Yusoff, A.R.B.M.; Jang, J. Polystyrene enhanced crystallization of perovskites towards high performance solar cells. Nanoscale Adv. 2019, 1, 76–85. [Google Scholar] [CrossRef]
- Pareja-Rivera, C.; Solis-Cambero, A.L.; Sanchez-Torres, M.; Lima, E.; Solis-Ibarra, D. On the true composition of mixed-cation perovskite films. ACS Energy Lett. 2018, 3, 2366–2367. [Google Scholar] [CrossRef]
- Hoke, E.T.; Slotcavage, D.J.; Dohner, E.R.; Bowring, A.R.; Karunadasa, H.I.; McGehee, M.D. Reversible photo-induced trap formation in mixed-halide hybrid perovskites for photovoltaics. Chem. Sci. 2015, 6, 613–617. [Google Scholar] [CrossRef] [PubMed]
- Aharon, S.; El Cohen, B.; Etgar, L. Hybrid lead halide iodide and lead halide bromide in efficient hole conductor free perovskite solar cell. J. Phys. Chem. C 2014, 118, 17160–17165. [Google Scholar] [CrossRef]
- Sadhanala, A.; Deschler, F.; Thomas, T.H.; Dutton, S.E.; Goedel, K.C.; Hanusch, F.C.; Lai, M.L.; Steiner, U.; Bein, T.; Docampo, P.; et al. Preparation of single-phase films of CH3NH3Pb (I1–xBrx)3 with sharp optical band edges. J. Phys. Chem. Lett. 2014, 5, 2501–2505. [Google Scholar] [CrossRef] [PubMed]
- Eperon, G.E.; Stranks, S.D.; Menelaou, C.; Johnston, M.B.; Herz, L.M.; Snaith, H.J. Formamidinium lead trihalide: A broadly tunable perovskite for efficient planar heterojunction solar cells. Energy Environ. Sci. 2014, 7, 982–988. [Google Scholar] [CrossRef]
- Heo, J.H.; Song, D.H.; Im, S.H. Planar CH3NH3PbBr3 hybrid solar cells with 10.4% power conversion efficiency, fabricated by controlled crystallization in the spin-coating process. Adv. Mater. 2014, 26, 8179–8183. [Google Scholar] [CrossRef]
- Yang, W.S.; Noh, J.H.; Jeon, N.J.; Kim, Y.C.; Ryu, S.; Seo, J.; Seok, S.I. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science 2015, 348, 1234–1237. [Google Scholar] [CrossRef]
- Jeon, N.J.; Noh, J.H.; Yang, W.S.; Kim, Y.C.; Ryu, S.; Seo, J.; Seok, S.I. Compositional engineering of perovskite materials for high-performance solar cells. Nature 2015, 517, 476–480. [Google Scholar] [CrossRef]
- Jacobsson, T.J.; Correa-Baena, J.P.; Pazoki, M.; Saliba, M.; Schenk, K.; Grätzel, M.; Hagfeldt, A. An exploration of the compositional space for mixed lead halogen perovskites for high efficiency solar cells. Energy Environ. Sci. 2016, 9, 1706–1724. [Google Scholar] [CrossRef]
- Stanić, D.; Kojić, V.; Čižmar, T.; Juraić, K.; Bagladi, L.; Mangalam, J.; Rath, T.; Gajović, A. Simulating the Performance of a Formamidinium Based Mixed Cation Lead Halide Perovskite Solar Cell. Materials 2021, 14, 6341. [Google Scholar] [CrossRef]
- Rai, M.; Wong, L.H.; Etgar, L. The Effect of the Perovskite Thickness on the Electroluminescence and Solar Cell Conversion Efficiency. J. Phys. Chem. Lett. 2020, 11, 8189–8194. [Google Scholar] [CrossRef] [PubMed]
- Valle-Pulido, J.; Solis, O.E.; Esparza, D.; Rodriguez-Rojas, R.A.; Turren-Cruz, S.H.; Rivas, J.M.; Zarazua, I. Degradation analysis of perovskite solar cells doped with MABr3 via electrochemical impedance. Sol. Energy 2023, 258, 148–155. [Google Scholar] [CrossRef]
- Zhou, Y.; Yang, M.; Pang, S.; Zhu, K.; Padture, N.P. Excep- tional morphology-preserving evolution of formamidinium lead triiodide perovskite thin films via organic-cation displacement. J. Am. Chem. Soc. 2016, 138, 5535–5538. [Google Scholar] [CrossRef]
- Pellet, N.; Gao, P.; Gregori, G.; Yang, T.Y.; Nazeeruddin, M.K.; Maier, J.; Grätzel, M. Mixed-organic-cation Perovskite photovoltaics for enhanced solar-light harvesting. Angew. Chem. Int. Ed. 2014, 53, 3151–3157. [Google Scholar] [CrossRef] [PubMed]
- Almora, O.; Baran, D.; Bazan, G.C.; Cabrera, C.I.; Erten-Ela, S.; Forberich, K.; Guo, F.; Hauch, J.; Ho-Baillie, A.W.Y.; Jacobsson, T.J.; et al. Device performance of emerging photovoltaic materials (Version 3). Adv. Energy Mater. 2023, 13, 2203313. [Google Scholar] [CrossRef]
- Binek, A.; Hanusch, F.C.; Docampo, P.; Bein, T. Stabilization of the trigonal high-temperature phase of formamidinium lead iodide. J. Phys. Chem. Lett. 2015, 6, 1249–1253. [Google Scholar] [CrossRef]
- Solis, O.E.; Fernandez-Saiz, C.; Rivas, J.M.; Esparza, D.; Turren-Cruz, S.H.; Julian-Lopez, B.; Boix, P.P.; Mora-Sero, I. α-FAPbI3 powder presynthesized by microwave irradiation for photovoltaic applications. Electrochim. Acta 2023, 439, 141701. [Google Scholar] [CrossRef]
- Weller, M.T.; Weber, O.J.; Frost, J.M.; Walsh, A. Cubic perovskite structure of black formamidinium lead iodide, α-[HC(NH2)2]PbI3, at 298 K. J. Phys. Chem. Lett. 2015, 6, 3209–3212. [Google Scholar] [CrossRef]
- Wang, Z.; Zhou, Y.; Pang, S.; Xiao, Z.; Zhang, J.; Chai, W.; Xu, H.; Liu, Z.; Padture, N.P.; Cui, G. Additive-modulated evolution of HC (NH2) 2PbI3 black polymorph for mesoscopic perovskite solar cells. Chem. Mater. 2015, 27, 7149–7155. [Google Scholar] [CrossRef]
- Zhou, Y.; Yang, M.; Kwun, J.; Game, O.S.; Zhao, Y.; Pang, S.; Padture, N.P.; Zhu, K. Intercalation crystallization of phase-pure α-HC(NH2)2PbI3 upon microstructurally engineered PbI2 thin films for planar perovskite solar cells. Nanoscale 2016, 8, 6265–6270. [Google Scholar] [CrossRef]
- Adhikari, N.; Dubey, A.; Gaml, E.A.; Vaagensmith, B.; Reza, K.M.; Mabrouk, S.A.A.; Gu, S.; Zai, J.; Qian, X.; Qiao, Q. Crystallization of a perovskite film for higher performance solar cells by controlling water concentration in methyl ammonium iodide precursor solution. Nanoscale 2016, 8, 2693–2703. [Google Scholar] [CrossRef] [PubMed]
- Futscher, M.H.; Lee, J.M.; McGovern, L.; Muscarella, L.A.; Wang, T.; Haider, M.I.; Fakharuddin, A.; Schmidt-Mende, L.; Ehrler, B. Quantification of ion migration in CH 3 NH 3 PbI 3 perovskite solar cells by transient capacitance measurements. Mater. Horiz. 2019, 6, 1497–1503. [Google Scholar] [CrossRef]
- Bag, M.; Renna, L.A.; Adhikari, R.Y.; Karak, S.; Liu, F.; Lahti, P.M.; Russell, T.P.; Tuominen, M.T.; Venkataraman, D. Kinetics of ion transport in perovskite active layers and its implications for active layer stability. J. Am. Chem. Soc. 2015, 137, 13130–13137. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Z.; Yuan, Y.; Shao, Y.; Wang, Q.; Dong, Q.; Bi, C.; Sharma, P.; Gruverman, A.; Huang, J. Giant switchable photovoltaic effect in organometal trihalide perovskite devices. Nat. Mater. 2015, 14, 193–198. [Google Scholar] [CrossRef] [PubMed]
- Yang, T.-Y.; Gregori, G.; Pellet, N.; Grätzel, M.; Maier, J. The significance of ion conduction in a hybrid organic–inorganic lead-iodide-based perovskite photosensitizer. Angew. Chem. Int. Ed. Engl. 2015, 54, 7905–7910. [Google Scholar] [CrossRef]
- Azpiroz, J.M.; Mosconi, E.; Bisquert, J.; De Angelis, F. Defect migration in methylammonium lead iodide and its role in perovskite solar cell operation. Energy Environ. Sci. 2015, 8, 2118–2127. [Google Scholar] [CrossRef]
- De Bastiani, M.; Dell’Erba, G.; Gandini, M.; D’Innocenzo, V.; Neutzner, S.; Kandada, A.R.S.; Grancini, G.; Binda, M.; Prato, M.; Ball, J.M.; et al. Ion migration and the role of preconditioning cycles in the stabilization of the J–V characteristics of inverted hybrid perovskite solar cells. Adv. Energy Mater. 2016, 6, 1501453. [Google Scholar] [CrossRef]
- Li, C.; Tscheuschner, S.; Paulus, F.; Hopkinson, P.E.; Kießling, J.; Köhler, A.; Vaynzof, Y.; Huettner, S. Iodine migration and its effect on hysteresis in perovskite solar cells. Adv. Mater. 2016, 28, 2446–2454. [Google Scholar] [CrossRef]
- Almora, O.; Guerrero, A.; Garcia-Belmonte, G. Ionic charging by local imbalance at interfaces in hybrid lead halide perovskites. Appl. Phys. Lett. 2016, 108, 043903. [Google Scholar]
- Guerrero, A.; Garcia-Belmonte, G.; Mora-Sero, I.; Bisquert, J.; Kang, Y.S.; Jacobsson, T.J.; Correa-Baena, J.-P.; Hagfeldt, A. Properties of contact and bulk impedances in hybrid lead halide perovskite solar cells including inductive loop elements. J. Phys. Chem. C 2016, 120, 8023–8032. [Google Scholar]
- Zarazua, I.; Bisquert, J.; Garcia-Belmonte, G. Light-induced space-charge accumulation zone as photovoltaic mechanism in perovskite solar cells. J. Phys. Chem. Lett. 2016, 7, 525–528. [Google Scholar] [CrossRef] [PubMed]
- Kazuya, T. Comment on “Simulation of current–voltage curves for inverted planar structure perovskite solar cells using equivalent circuit model with inductance”. Appl. Phys. Express 2017, 10, 059101. [Google Scholar]
- Pockett, A.; Eperon, G.E.; Sakai, N.; Snaith, H.J.; Peter, L.M.; Cameron, P.J. Microseconds, milliseconds and seconds: Deconvoluting the dynamic behaviour of planar perovskite solar cells. Phys. Chem. 2017, 19, 5959–5970. [Google Scholar] [CrossRef] [PubMed]
- Almora, O.; Cho, K.T.; Aghazada, S.; Zimmermann, I.; Matt, G.J.; Brabec, C.J.; Nazeeruddin, M.K.; Garcia-Belmonte, G. Discerning recombination mechanisms and ideality factors through impedance analysis of high-efficiency perovskite solar cells. Nano Energy 2018, 48, 63–72. [Google Scholar] [CrossRef]
- Zarazua, I.; Han, G.; Boix, P.P.; Mhaisalkar, S.; Fabregat-Santiago, F.; Mora-Seró, I.; Bisquert, J.; Garcia-Belmonte, G. Surface Recombination and Collection Efficiency in Perovskite Solar Cells from Impedance Analysis. J. Phys. Chem. Lett. 2016, 7, 5105–5113. [Google Scholar] [CrossRef] [PubMed]
Sample | Jsc (mA/cm2) | Voc (V) | FF (%) | η (%) |
---|---|---|---|---|
0.915 | 20.60 | 1.084 | 62.50 | 14.00 |
0.83 | 18.90 | 1.113 | 57.70 | 12.10 |
0.745 | 18.56 | 1.016 | 61.16 | 11.54 |
FAI | Rapid Increase | Slow Increase | Fast Decay | Slow Decay | ||||
---|---|---|---|---|---|---|---|---|
M | ΔVR1 (V) | τr1 (ms) | ΔVR2 (V) | τr2 (s) | ΔVD1 (V) | τd1 (ms) | ΔVD2 (V) | τd2 (s) |
1.135 | 1.07 | 90 | 0.36 | 9.42 | 0.445 | 98 | 0.39 | 83.53 |
1.03 | 0.968 | 140 | 0.03 | 9.43 | 1.009 | 173 | 0.076 | 82.67 |
0.924 | 0.817 | 90 | 0.08 | 9.65 | 0.714 | 86 | 0.296 | 83.86 |
FAI | Rrec | Rt | Cbulk | Ri,bulk | Ri,acc | Cacc |
---|---|---|---|---|---|---|
M | F | F | ||||
1.135 M | ||||||
1.03 M | ||||||
0.924 M |
FAI (M) | Voc Max (V) | D (cm2/s) | ΔVD1 (V) | D (cm2/s) | Voc Min (V) | D (cm2/s) |
---|---|---|---|---|---|---|
1.135 | 1.084 | 0.64 | 0.25 | |||
1.03 | 1.113 | 0.009 | 0.015 | |||
0.924 | 1.016 | 0.33 | 0.096 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodriguez-Perez, J.J.; Mhamdi, A.; Torres, J.; Montes-Valenzuela, I.; Rivas, J.M.; Esparza, D.; Contreras-Solorio, D.A. Ionic Mobility and Charge Carriers Recombination Analyzed in Triple Cation Perovskite Solar Cells. Coatings 2023, 13, 1673. https://doi.org/10.3390/coatings13101673
Rodriguez-Perez JJ, Mhamdi A, Torres J, Montes-Valenzuela I, Rivas JM, Esparza D, Contreras-Solorio DA. Ionic Mobility and Charge Carriers Recombination Analyzed in Triple Cation Perovskite Solar Cells. Coatings. 2023; 13(10):1673. https://doi.org/10.3390/coatings13101673
Chicago/Turabian StyleRodriguez-Perez, Juan Jose, Asya Mhamdi, Jeevan Torres, Isaac Montes-Valenzuela, Jesus Manuel Rivas, Diego Esparza, and David Armando Contreras-Solorio. 2023. "Ionic Mobility and Charge Carriers Recombination Analyzed in Triple Cation Perovskite Solar Cells" Coatings 13, no. 10: 1673. https://doi.org/10.3390/coatings13101673
APA StyleRodriguez-Perez, J. J., Mhamdi, A., Torres, J., Montes-Valenzuela, I., Rivas, J. M., Esparza, D., & Contreras-Solorio, D. A. (2023). Ionic Mobility and Charge Carriers Recombination Analyzed in Triple Cation Perovskite Solar Cells. Coatings, 13(10), 1673. https://doi.org/10.3390/coatings13101673