Effect of Pore Evolution on Thermal Diffusivity and Radiation Characteristics of Thermal Barrier Coatings after High-Temperature Exposures
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation and Characterization
2.2. Thermal Conductivity Solution Model
2.3. Radiation Characterization Solution Model
3. Results
3.1. Thermal-Barrier-Coating Porosity Statistics
3.2. Effect of Pores on Thermal Conductivity
3.3. Effect of Pores on Thermal Radiation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, T.; Xuan, Y.; Han, X. Investigation on hybrid thermal features of aero-engines from combustor to turbine. Int. J. Heat Mass Transf. 2023, 200, 123559. [Google Scholar] [CrossRef]
- Ezugwu, E.O.; Bonney, J.; Yamane, Y. An overview of the machinability of aeroengine alloys. J. Mater. Process. Technol. 2003, 134, 233–253. [Google Scholar] [CrossRef]
- Liu, Y.; Xu, G.; Fu, Y.; Wen, J.; Huang, H. Thermal dynamic and failure research on an air-fuel heat exchanger for aero-engine cooling. Case Stud. Therm. Eng. 2023, 42, 102715. [Google Scholar] [CrossRef]
- Vaßen, R.; Bakan, E.; Mack, D.E.; Guillon, O. A perspective on thermally sprayed thermal barrier coatings: Current status and trends. J. Therm. Spray Technol. 2022, 31, 685–698. [Google Scholar] [CrossRef]
- Dong, W.; Zhu, J.; Zhou, Z.; Chi, X. Heat transfer and temperature analysis of an aeroengine strut under icing conditions. J. Aircr. 2015, 52, 216–225. [Google Scholar] [CrossRef]
- Zhang, G.; Zhu, R.; Xie, G.; Li, S.; Sundén, B. Optimization of cooling structures in gas turbines: A review. Chin. J. Aeronaut. 2022, 35, 18–46. [Google Scholar] [CrossRef]
- Unnikrishnan, U.; Yang, V. A review of cooling technologies for high temperature rotating components in gas turbine. Propuls. Power Res. 2022, 11, 293–310. [Google Scholar] [CrossRef]
- Cao, X.Q.; Vassen, R.; Stöver, D. Ceramic materials for thermal barrier coatings. J. Eur. Ceram. Soc. 2004, 24, 1–10. [Google Scholar] [CrossRef]
- Padture, N.P.; Gell, M.; Jordan, E.H. Thermal Barrier Coatings for Gas-Turbine Engine Applications. Science 2002, 296, 280–284. [Google Scholar] [CrossRef]
- Vagge, S.T.; Ghogare, S. Thermal barrier coatings: Review. Mater. Today Proc. 2022, 56, 1201–1216. [Google Scholar] [CrossRef]
- Tano, I.; Nylen, P.; Wigren, J.; Gupta, M.K.; Curry, N. Relationships Between Coating Microstructure and Thermal Conductivity in Thermal Barrier Coatings—A Modelling Approach. In Thermal Spray 2010: Global Solutions for Future Applications; Springer: Berlin/Heidelberg, Germany, 2010; pp. 66–72. [Google Scholar]
- Fang, H.; Wang, W.; Yang, Z. Phase stability, thermal shock behavior and CMAS corrosion resistance of Yb2O3-Y2O3 co-stabilized zirconia thermal barrier coatings prepared by atmospheric plasma spraying. Surf. Coat. Technol. 2021, 427, 127864. [Google Scholar] [CrossRef]
- Ye, D.; Xu, Z.; Pan, J. Prediction and Analysis of the Grit Blasting Process on the Corrosion Resistance of Thermal Spray Coatings Using a Hybrid Artificial Neural Network. Coatings 2021, 11, 1274. [Google Scholar] [CrossRef]
- Ye, D.; Wang, W.; Zhou, H. Quantitative determination of porosity in thermal barrier coatings using terahertz reflectance spectrum: Case study of atmospheric-plasma-sprayed YSZ coatings. IEEE Trans. Terahertz Sci. Technol. 2020, 10, 383–390. [Google Scholar] [CrossRef]
- Ye, D.; Wang, W.; Zhou, H. In-situ evaluation of porosity in thermal barrier coatings based on the broadening of terahertz time-domain pulses: Simulation and experimental investigations. Opt. Express 2019, 27, 28150–28165. [Google Scholar] [CrossRef]
- Li, R.; Ye, D.; Xu, Z. Nondestructive evaluation of thermal barrier coatings thickness using terahertz Time-Domain spectroscopy combined with hybrid machine learning approaches. Coatings 2022, 12, 1875. [Google Scholar] [CrossRef]
- Chi, W.; Sampath, S.; Wang, H. Microstructure-thermal conductivity relationships for plasma-sprayed yttria-stabilized zirconia coatings. J. Am. Ceram. Soc. 2008, 91, 2636–2645. [Google Scholar] [CrossRef]
- Golosnoy, I.O.; Tsipas, S.A.; Clyne, T.W. An analytical model for simulation of heat flow in plasma-sprayed thermal barrier coatings. J. Therm. Spray Technol. 2005, 14, 205–214. [Google Scholar] [CrossRef]
- Wang, L.; Wang, Y.; Sun, X.G.; He, J.Q.; Pan, Z.Y.; Zhou, Y.; Wu, P.L. Influence of pores on the thermal insulation behavior of thermal barrier coatings prepared by atmospheric plasma spray. Mater. Des. 2011, 32, 36–47. [Google Scholar] [CrossRef]
- Cernuschi, F.; Ahmaniemi, S.; Vuoristo, P.; Mäntylä, T. Modelling of thermal conductivity of porous materials: Application to thick thermal barrier coatings. J. Eur. Ceram. Soc. 2004, 24, 2657–2667. [Google Scholar] [CrossRef]
- Cernuschi, F.; Bison, P.; Moscatelli, A. Microstructural characterization of porous thermal barrier coatings by laser flash technique. Acta Mater. 2009, 57, 3460–3471. [Google Scholar] [CrossRef]
- Wang, M.; Wang, J.; Pan, N.; Chen, S. Mesoscopic predictions of the effective thermal conductivity for microscale random porous media. Phys. Rev. E 2007, 75, 036702. [Google Scholar] [CrossRef] [PubMed]
- Gupta, N.; Chaitanya, G.R.; Mishra, S.C. Lattice Boltzmann method applied to variable thermal conductivity conduction and radiation problems. J. Thermophys. Heat Transf. 2006, 20, 895–902. [Google Scholar] [CrossRef]
- Yee, K. Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Trans. Antennas Propag. 1966, 14, 302–307. [Google Scholar]
- Sullivan, D.M. Electromagnetic Simulation Using the FDTD Method; John Wiley & Sons: Piscataway, NJ, USA, 2013. [Google Scholar]
- Manara, J.; Arduini-Schuster, M.; Rätzer-Scheibe, H.J. Infrared-optical properties and heat transfer coefficients of semitransparent thermal barrier coatings. Surf. Coat. Technol. 2009, 203, 1059–1068. [Google Scholar] [CrossRef]
- Lu, Z.; Myoung, S.W.; Kim, H.S.; Kim, M.S.; Lee, J.H.; Jung, Y.G.; Jang, J.C.; Paik, U. Microstructure Evolution and Interface Stability of Thermal Barrier Coatings with Vertical Type Cracks in Cyclic Thermal Exposure. J. Therm. Spray Technol. 2013, 22, 671–679. [Google Scholar] [CrossRef]
- Ganvir, A.; Kumara, C.; Gupta, M.; Nylen, P. Thermal Conductivity in Suspension Sprayed Thermal Barrier Coatings: Modeling and Experiments. J. Therm. Spray Technol. 2017, 26, 71–82. [Google Scholar] [CrossRef]
- Shi, H.; Zhao, C.Y.; Wang, B.X. Modeling the thermal radiation properties of thermal barrier coatings based on a random generation algorithm. Ceram. Int. 2016, 42, 9752–9761. [Google Scholar] [CrossRef]
- Zhang, B.J.; Wang, B.X.; Zhao, C.Y. Microstructural effect on the radiative properties of YSZ thermal barrier coatings (TBCs). Int. J. Heat Mass Transf. 2014, 73, 59–66. [Google Scholar] [CrossRef]
Spraying Parameter | Bonding Coat | YSZ Ceramic Coat |
---|---|---|
Power of spray gun, KW | 30 | 36–40 |
Flow rate of main gas, L/min | 35 | 35 |
Flow rate of minor gas, L/min | 9 | 9 |
Speed of powder feeder, g/min | 18 | 24 |
Spraying distance, mm | 100 | 80 |
Temperature of substrate, °C | 250–300 | / |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, Z.; Xu, S.; Zhang, Q.; Xu, J.; Ye, D. Effect of Pore Evolution on Thermal Diffusivity and Radiation Characteristics of Thermal Barrier Coatings after High-Temperature Exposures. Coatings 2023, 13, 1675. https://doi.org/10.3390/coatings13101675
Xu Z, Xu S, Zhang Q, Xu J, Ye D. Effect of Pore Evolution on Thermal Diffusivity and Radiation Characteristics of Thermal Barrier Coatings after High-Temperature Exposures. Coatings. 2023; 13(10):1675. https://doi.org/10.3390/coatings13101675
Chicago/Turabian StyleXu, Zhou, Shuheng Xu, Qiukun Zhang, Jianfei Xu, and Dongdong Ye. 2023. "Effect of Pore Evolution on Thermal Diffusivity and Radiation Characteristics of Thermal Barrier Coatings after High-Temperature Exposures" Coatings 13, no. 10: 1675. https://doi.org/10.3390/coatings13101675
APA StyleXu, Z., Xu, S., Zhang, Q., Xu, J., & Ye, D. (2023). Effect of Pore Evolution on Thermal Diffusivity and Radiation Characteristics of Thermal Barrier Coatings after High-Temperature Exposures. Coatings, 13(10), 1675. https://doi.org/10.3390/coatings13101675