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Abstract: Microbiologically influenced corrosion (MIC) is the process of material degradation in the
presence of microorganisms and their biofilms. This is an environmentally assisted type of corrosion,
which is highly complex and challenging to fully understand. Different metallic materials, such as
steel alloys, magnesium alloys, aluminium alloys, and titanium alloys, have been reported to have
adverse effects of MIC on their applications. Though many researchers have reported bacteria as the
primary culprit of microbial corrosion, several other microorganisms, including fungi, algae, archaea,
and lichen, have been found to cause MIC on metal and non-metal surfaces. However, less attention
is given to the MIC caused by fungi, algae, archaea, and lichens. In this review paper, the effects
of different microorganisms, including bacteria, fungi, algae, archaea, and lichens, on the corrosion
properties of engineering materials have been discussed in detail. This review aims to summarize
all of the corrosive microorganisms that directly or indirectly cause the degradation of structural
materials. Accusing bacteria of every MIC case without a proper investigation of the corrosion site
and an in-depth study of the biofilm and secreted metabolites can create problems in understanding
the real cause of the materials’ failure. To identify the real corrosion agent in any environment, it is
highly important to study all kinds of microorganisms that exist in that specific environment.

Keywords: microorganisms; microbial degradation; microbiologically influenced corrosion and
biofilms; structural materials

1. Introduction

The process of material deterioration by the direct or indirect involvement of various
microscopic microorganisms is called microbiologically influenced corrosion (MIC). MIC
is also termed as microbial corrosion, bio-corrosion, and microbially induced corrosion.
In 1891, Garret, for the first time, discussed MIC when he found degradation of lead-
covered cables by microorganisms [1]. Later on, in 1910, Gaines reported the corrosive
activities of microorganisms by relating the sulphur present in the corrosion product with
the activities of microbes [2]. However, more attention was paid to this problem in the
middle of the last century, and intensive research was conducted, reporting the involvement
of microorganisms in the deterioration of various materials [3].

MIC is the main cause of localized corrosion, including pitting corrosion, crevice
corrosion, and stress corrosion cracking. Microorganisms become attached to the material
surface, secrete extracellular polymeric substances (EPS), and form a biofilm, usually
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growing in the shape of a continuous sheet, sludge, or tubercle [4]. The name biofilm
was coined in 1978 and defined as a matrix enclosing bacterial cells adherent to each
other or to surfaces and interfaces [5,6]. Bacterial attachment and biofilm development
on surfaces have been shown in Figure 1 [7]. Biofilms formed by corrosive microbes
have been considered a topic of interest since 1943 [8]. Different factors, such as the
type of microorganisms, surface morphology, chemical composition of the medium, and
hydrodynamics, affect biofilm formation on material surfaces [9,10].
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Figure 1. Schematic diagram displaying biofilm development (a) [11]. (b) SEM micrographs of biofilm
development with increasing immersion time, where S-1 represents the bacterial cells attachment, S-2
represents the establishment of bacterial cells in the form of a colony and EPS secretion, S-3 denotes
the early stage of biofilm formation, S-4 characterizes the fully grown biofilm, and S-5 is the final
stage of the biofilm where bacterial cells leave the biofilm and are mature enough to attach to a new
surface. Reprinted with permission from ref. [11]. Copyright 2023 Frontiers in Chemistry. (c) CLSM
images showing the biofilm thickness measured after 1, 2, and 7 days of immersion in a medium
inoculated with marine bacteria Marinobacter aquaeolei. Reprinted with permission from ref. [12].
Copyright 2023 Springer Nature.

According to the published research, the microorganisms that develop biofilms and
secrete aggressive metabolites (such as sulphide ions and acids) along with the secretion
of EPS are the most corrosive types of bacteria [3]. EPS is a highly important component
of a biofilm, performing the function of glue, keeping microorganisms together in a safe
sheath where they can securely grow and proliferate in different shapes. MIC cooperates in
the process of wear, cavitation, and erosion, triggering the peeling of the material surface.
Since microorganisms usually colonize the material surface, they are more aggressive in
producing pits on the surface, which is a worse form of corrosion compared to uniform
corrosion [13,14]. Pits are usually initiated beneath the biofilm, attributed to the secretion
of corrosive metabolites and the formation of concentrated cells.

Both metallic and non-metallic materials are affected by corrosion caused by mi-
croorganisms. Numerous cases of the deterioration of stonework, polymers, architectural
building materials, and fibre-reinforced composites caused by microorganisms have been
reported [15,16]. MIC is a globally identified problem, having high damaging effects on
various engineering alloys in different locations, such as oil and gas fields, water pipelines,
fresh water, demineralized water, seawater, chemical processing facilities, food stuffs, air-
craft fuel, soil, human plasma, sewage, pulp and paper processing facilities, exploration
equipment, transportation vehicles, production facilities, nuclear power generation plants,
marine environments, storage facilities, and fire protection systems [17–20]. Huge economic
losses have been reported worldwide that were caused by MIC [21,22]. Material failure
owing to MIC greatly increases the potential safety concerns [23]. A crude oil pipeline
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leakage that occurred in 2006 at Alaska Prudhoe Bay created many problems in the global
oil market, and according to the investigation, MIC was the main culprit responsible for the
pipeline failure [24]. In another case, the failure due to MIC of an oil transporting pipeline
with an 8-inch diameter was reported just 8 months after its installation [25]. Billions of
dollars are spent every year on material renovation due to corrosion in the USA alone [26].
It has been observed that 50% of the material failures in the oil and gas industries are due
to the activities of microorganisms, and 20%–40% of overall corrosion is due to MIC [27].

The majority of corrosive microorganisms live in aquatic environments. This is because
water makes available all of the necessary chemicals for their activities and provides them
with nutrients in the best possible form that they can easily digest. MIC is not a separate
type of corrosion; indeed, it is electrochemical corrosion in origin and can be explained
within the known framework of corrosion control measures already used for controlling
electrochemical corrosion [28]. This definition of MIC makes it possible for researchers
to find ways for its treatment and control. The parameters needed for MIC are corrosive
microorganisms, nutrients, and water-containing medium.

The most common microorganisms frequently found to be involved in initiating and
accelerating the corrosion processes are bacteria, fungi, algae, archaea, and lichens. This
review focuses on the study of different types of microorganisms involved in MIC. In
addition, the habitats of the corrosive microorganisms and the course by which they take
part in corrosion processes will be discussed in detail.

2. Bacteria

Most bacteria are unicellular microorganisms and are frequently present in various
environments ranging from soil to water, acidic hot springs, and radioactive waste prod-
ucts [29]. This group of microorganisms can survive at temperatures ranging from −10 ◦C
to 100 ◦C and pHs from 0 to 10.5. The oxygen concentration needed for their growth is 0 to
saturated medium, and the pressure required is from vacuum to 31 MPa. Some bacteria are
extremely halophilic, living in a salt concentration of 30% (parts per billion). Bacteria that
increase the corrosion process are observed to have good growth at a temperature range of
15 ◦C to 45 ◦C and pHs of 6–8 [30].

Bacteria have the ability to accumulate on a metal surface and establish a biofilm,
which contains live and dead bacterial cells, extracellular polymeric substances (EPS),
corrosion products, as well as organic and inorganic debris. The percentage of the corrosion
products and EPS in a biofilm is about 75%–95%, while 5%–25% of a biofilm is made up of
bacterial cells [31,32]. Biofilm formation leads to gradients of pH and oxygen concentration
at the metal/biofilm interface, resulting in severe localized corrosion attacks, such as pitting,
crevices, and stress corrosion cracking (Figure 2) [33,34].
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Based on oxygen use, bacteria are further divided into aerobic bacteria, anaerobic
bacteria, facultative anaerobe, and micro-aerophilic bacteria. According to the published
research, bacteria live both in aerobic and anaerobic environments and have the ability to
enhance the bio-deterioration of metallic and non-metallic materials; however, it has been
reported that anaerobic corrosion is more destructive compared to aerobic corrosion [35].
Anaerobic bacteria, including iron-reducing bacteria (IRB), acid-producing bacteria (APB),
iron- and manganese-oxidizing bacteria (IOB, MOB), and sulphate-reducing bacteria (SRB),
are reported to have detrimental effects on the properties of metals. Among them, SRB
have been considered to play a key role in the process of corrosion [36,37]. SRB usually use
SO4

2− as a terminal electron acceptor for energy generation in their metabolism, which
indirectly contributes to the accumulation of corrosive sulphide and organic acid end-
products, causing localized pitting corrosion of metals. Different steel alloys have been
reported with severe corrosion rates in the presence of SRB [31,38]. The black-coloured
sulphide corrosion products usually found at the localized corrosion sites of ferrous alloys
indicate the presence of SRB [39]. According to the cathodic depolarization theory, SRB
utilize hydrogen produced by the reduction of protons to reduce sulphate. Hydrogen
consumption by SRB leads to an imbalance and encourages proton reduction, resulting in
an increased oxidation of the steel surface by an oxidation reaction.

The mechanism involved is given as follows:

Iron oxidation : 4Fe→ 4Fe2+ + 8e− (1)

Water dissociation : 8H2O → 8H+ + 8OH− (2)

Proton reduction : 8H+ + 8e− → 8H (3)

Cathodic depolarization by SRB : SO2−
4 + 8H → S2− + 4H2O (4)

Corrosion product : Fe2+ + S2− → FeS (5)

The iron sulphide (FeS) formed during this process works as a catalyst, promoting the
reduction of protons on the material surface, which increases electron transfer, resulting
in fast dissolution of the metal. Gu et al. proposed another theory called the bio-catalytic
cathodic sulphate reduction (BCSR) theory [40]. The BCSR theory postulates that in MIC
caused by SRB, sulphate works as a cathode while iron works as an anode. With the help of
a biocatalyst, sulphate consumes the electrons released during iron oxidation and becomes
reduced [40,41]. According to this theory, the following anodic and cathodic reactions are
involved in MIC caused by an SRB biofilm:

Anodic reaction : 4Fe→ 4Fe2+ + 8e− (6)

Cathodic reaction : SO2−
4 + 8H + 8e− → HS− + OH− + 3H2O (7)

Damaging effects of SRB on different metallic alloys ranging from iron alloys to
titanium alloys have been reported [42–45]. Different researchers have proposed different
theories to describe the role of SRB in the process of microbial corrosion. It has been stated
that SRB consume hydrogen during their metabolism and accelerate cathodic reactions [46].
Silva et al. reported that the cathodic reactions on the surfaces of carbon steel and stainless
steel were highly catalysed by hydrogenase enzymes [47,48]. In another study, Dihn et al.
stated that SRB obtain electrons from the iron surface when zero-valent iron is available as
a single electron donor [49].

IOB, also called metal oxidizing bacteria, are referred to as causing MIC [50,51]. The
synergistic effect of aerobic and anaerobic bacteria is more aggressive than a single bacterial
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species. A community of aerobic IOB and anaerobic SRB severely increased the corrosion
rate of X65 steel in a simulated marine environment [52].

3. Fungi

Fungi are eukaryotic organisms, such as yeast, moulds, and some well-known mush-
rooms. Contrary to bacteria, fungi are heterotrophs that secrete digestive enzymes into the
surrounding environment and absorb dissolved molecules for their nutrition. Fungi can
survive and grow in an environment highly deficient in water. Two species of this group,
Aspergillus and Penicillium, have been found to tolerate very high and low pHs (above 12
and below 2) in their environment [53].

The involvement of fungi in MIC has been reported. Alekhova et al. found degra-
dation of aluminium alloys by fungi-induced MIC on the Mir Space Station [54]. Carbon
steel and aluminium alloys exposed to hydrocarbon fuel have been found to have an
increased corrosion rate caused by fungi [55]. Videla et al. clarified the MIC mechanism
in a fuel/water system as follows: (1) organic acidic metabolites locally increase the pro-
ton concentration, (2) metabolites of microorganisms decrease the surface energy of the
interface passive oxides film to electrolytes, (3) the presence of microorganisms increases
the oxidizing properties of the medium, thus increasing the chances of pitting corrosion,
(4) microorganisms utilize corrosion inhibitors from the medium, and (5) adhesion of
microbes speeds up the dissolution of metals [55]. Differential aeration cells created by
fungi on the metal surface have been reported to enhance the corrosion process [55].

Metabolically, fungi are highly diverse microorganisms that are able to obtain nutri-
tion from the degradation of various organic materials, such as polymeric organic com-
pounds and hydrocarbons. Some fungi produce organic compounds, including organic
acids and complexants, which affect the properties of metals [56,57]. Fungus-induced
degradation of the coatings and underlying metals has been reported in several stud-
ies [58,59]. Stranger-Johannessen reported fungal degradation of ship cargo coated with
chlorinated rubber. In another study, the deterioration of ship holds coated with epoxy
resin and filled with molasses and fatty oils, as well as other fluid cargoes, was reported by
Stranger-Johannessen [60]. In addition, Stranger-Johannessen investigated and confirmed
the fungal-induced corrosion of polyurethane cable sheathing in a marine environment [60].

It has been stated that fungal-induced corrosion of metallic materials and coatings is
associated with the production of organic acids [61]. Fungal degradation of aluminium has
attracted more attention from researchers due to its impact on the integrity of aircraft [62].
Damage to aircraft integrity caused by fungal biofilms has been reported on several occa-
sions [62]. Fungi degrade organic materials, such as lubricants, cladding, and jet fuel, and
generate organic acids [62–65]. Fungi usually produce a wide range of organic acids in an
aerobic environment, while most bacteria generate organic acids in an anaerobic environ-
ment [66]. Most of these acids are corrosive, causing the deterioration of different materials.
For example, it has been reported that formic acid and acetic acid highly increased the
corrosion of radioactive waste containers made of carbon steel [67].

4. Algae

Algae are unicellular aquatic microorganisms and are able to produce their own
food by the process of photosynthesis. Algae are not closely related to each other in an
evolutionary sense. For instance, they can live as single-cell microscopic algae or can be
found in macroscopic and multicellular forms, which exist in the form of a colony.

Besides their adverse effects on water quality, these microorganisms considerably influ-
ence the corrosion process of engineering materials in marine environments [68]. Figure 3
represents different diatoms attached to the surface of stainless steel. The attachment of
single-cell algae (diatoms) to stainless steel surfaces has been observed by different re-
searchers [69–73]. It was found that the colonization of diatoms on a stainless steel surface
was more active and fast in the light compared to the dark [74]. The process of photosynthe-
sis plays a key role in enhancing corrosion by changing the surface state (such as dissolved
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oxygen and pH) of metallic materials [75,76]. Degradation due to algal biofilms has been
reported for metallic materials. For instance, the corrosion process of Q235 steel was highly
increased in the presence of Chlorella vulgaris, which is an algae species [68].
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resents the presence of Cocconeis, (b) represents the presence of Cymbella sp., while (c) represents
Amphora sp. Reprinted with permission from ref. [75]. Copyright 2023 Taylor & Francis.

Furthermore, through ecological studies, it has been specified that algae and bacteria
living together in a fouled part of the material maintain an extremely close association with
each other [77,78]. A study on symbiosis-induced biofouling in a marine micro-fouling
system, where bacterial biofilms form the underlying layer and microalgae work as the
elementary biofouling layer, has been reported [79]. It was found that the corrosion rate of
carbon steel (Q235) immersed in a culture medium inoculated with the bacterium Bacillus
altitudinis was 2.2 times higher than that in a sterile medium. Meanwhile, the corrosion
rate of Q235 steel in the presence of both Phaeodactylum tricornutum and its symbiotic
bacterium B. altitudinis was about 7 times higher compared to the effects of the individual
bacterial strain.

Microalgae have been found to secrete EPS, which further triggers the corrosion
process by complexation with metals [68]. Multispecies biofilms, as shown in Figure 4, are
able to form stable micro-consortia that strengthen the three-dimensional structure of the
adhesive layer and accelerate biofouling. Owing to the combined effect of the symbiotic
system, the anodic part underneath the biofilms, which lacks oxygen and is abundant in
EPS, would continue dissolving. This further enhances the oxygen concentration cell (OCC)
corrosion of the metal, leading to an increased accumulation of corrosion products on the
material surface [80].
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The reactions involved in this process are given as follows [79]:

Metal oxidation : 2Fe → 2Fe2+ + 4e− (8)

Oxygen reduction : O2 + 2H2O + 4e− → 4OH− (9)

Ionic reaction : Fe2+ + 2OH− → Fe(OH)2 (10)

Oxidizing reaction : 2Fe(OH)2 +
1
2

O2 → 2FeOOH + H2O (11)

Decomposition reaction : 2FeOOH → Fe2O3 + H2O (12)

Complexing reaction : Fe2+ + EPS→ [Fe− EPS]2+ (13)

Pyritization reaction : Fe2+ + HS− → H+ + FeSaq → FeSS (14)
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FeSaq + H2Saq → FeS2 + H2 (15)

5. Archaea

Archaea are a group of microorganisms originally believed to be bacteria and called
archaebacteria owing to their physical similarities. But later, through genetic analysis, it
was found that archaea are different organisms from bacteria and eukaryotes. This analysis
earned them their own domain in the three domain classification originally proposed by
Woese in 1977, alongside the eukaryotes and the bacteria [81]. In addition to bacteria,
archaea are also an important part of the microbial system [82].

Archaea are broadly distributed in the world. The majority of archaea have the ability
to inhabit and thrive in some extreme environments, such as those with enormously low
oxygen levels, high acidity, high salinity, and very high temperatures, which provide
archaea with distinctive cell structures and metabolic characteristics [83].

Archaea have been found to cause MIC of metallic materials [84,85]. For instance, the
presence of methanogenic and thermophilic archaea has been reported in high-temperature,
anaerobic oil production fluids collected from the North Sea and North Slope of Alaskan oil
fields [86]. Both the methanogenic and thermophilic archaea found in the above-mentioned
locations were reported to have corrosion triggering effects [87,88]. It was stated that the
methanogenic archaea (Methanothermobacter sp.) used carbon steel as an energy source
and accelerated its corrosion process, while the thermophilic archaea (Thermococcales sp.)
enhanced carbon steel degradation through its iron reduction ability as well as the secretion
of fatty acid metabolites. Furthermore, Usher et al. observed the colonization and corrosive
effects of methanogenic archaeal communities on a carbon steel surface [89]. Moreover,
it has been noted that halophilic archaea such as Natronorubrum tibetense, which inhabits
alkali soil with a high level of salinity, is capable of using iron in carbon steel and stainless
steel as a source of energy to promote their corrosion processes [90,91]. Carbon steel
Q235 and stainless steel 304 were investigated during these studies, and it was noted
that samples immersed in archaea-inoculated media possessed weak linear polarization
resistance, increased pitting corrosion, and high corrosion current density, indicating that
archaea significantly deteriorated the materials.

Methane-producing microbes trigger the corrosion process of iron-containing metals.
H2 has been considered as an electron shuttle between Fe(0) and methanogens. Some of
the methanogens, such as the Methanosarcina acetivorans, catalyse direct electron transfer
from metal-to-microbe to support methane production [92]. In M. acetivorans, deletion of
the gene for multiheme eliminated methane production from Fe(0) by the outer-surface
c-type cytochrome MmcA, which is consistent with the basic role of MmcA in other forms
of extracellular electron transfer. Dawn et al. proposed that these findings, together with
the earlier statement that outer surface c-type cytochromes also work as electron carriers
between Fe(0) and microbes, such as Geobacter and Shewanella species, suggest that the
presence of multiheme c-type cytochromes on corrosion surfaces might be indicative of
direct metal-to-microbe electron transfer and that deactivating the cytochrome function
could be an important strategy to inhibit corrosion.

As mentioned before, thermophilic archaea can survive at high temperatures
(60–80 ◦C) [93]. A thermophilic sulphate-reducing archaeon called Archaeoglobus fulgidus
was cultivated on the surface of C1018 carbon steel at 80 ◦C under organic carbon starvation.
C1018 carbon steel immersed in archaea-inoculated medium for 7 days was observed to
have more sessile cell accumulation on its surface, which aggravated the material, leading
to a high corrosion rate and increased pitting corrosion (Figure 5) [84]. It was stated that
the EET-MIC mechanism could apply to the corrosion of C1018 carbon steel caused by A.
fulgidus, where carbon source starvation forced A. fulgidus sessile cells to start utilizing
extracellular elemental iron for energy production. Based on this study, it was concluded
that SRB and NRB sulphate-reducing archaea have the capability to use elemental iron as
an electron donor to obtain energy for their metabolic activities.
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source reductions. Reprinted with permission from ref. [84]. Copyright 2023 Elsevier.

6. Lichens

A lichen is actually two organisms working as a single stable unit. Lichens are plant-
like organisms that consist of a symbiotic association of algae or cyanobacteria and fungi.
Lichens have about 20,000 known species worldwide that have been found surviving in
different environmental conditions. This is a diverse group of organisms, having the ability
to colonize a wide range of surfaces, including tree bark, exposed rock, biological soil
crust, and other metallic and non-metallic materials in various environments. Through
metabolism, lichens discharge different kinds of organic molecules, such as oxalic acid and
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polyphenolic acids, indicated as “lichen acids”, that have been confirmed to play a vital
role in weathering and neogenesis [94].

The deterioration caused by lichens occurs at the interface between the lichen and
metal substrate. This interface has been considered a place of significant physical and
chemical activities, presenting a very complex heterogeneity in which both primary and
secondary minerals, organic acids, and compounds, as well as all kinds of organisms,
including lichens, free-living fungi, free-living algae, and bacteria, are involved [95]. This
phenomenon is happening on all kinds of substrates, whether natural or man-made. In the
case of metal, lichen can directly affect the surface or affect the antirust paint applied to the
surface of the metal, thus contributing to the oxidation process.

The deterioration of ceramics due to lichen development on their surfaces has been
reported [96]. It has been stated that the oxalic acid released by lichens was the main reason
for ceramic deterioration and aging [96]. The deteriorating effects of lichens on natural
rocks and building stones have been recognized long before [97,98]. The mycobiont of
lichens, which is always in close contact with the substrate, makes them able to cause
deterioration. Bio-deterioration by lichens is, in general, attributed to a combination of
physical mechanisms (such as the pressure exerted by the expansion and contraction of
thalli, rhizine adhesion, and hyphal penetration) and chemical factors, which include
the interaction of carbon dioxide, organic acids, and lichen substances with complex
properties [99]. The effects of lichens on the host substrate are shown in Figure 6 [95].
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7. Conclusions

MIC has been considered a major threat to material applications in various fields.
However, until now, most researchers only considered bacteria as a key player involved in
MIC. According to this short review, there are a number of microorganisms, such as bacteria,
fungi, algae, archaea, and lichens, that are directly or indirectly participating in the process
of MIC. Therefore, it is highly important to identify the microorganisms actually involved
in the process of corrosion in the real environment. In addition, genetic manipulation of
corrosion-causing microorganisms is highly important to better understand the process
and mechanisms of MIC.
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W.L.; formal analysis, S.L.; writing original draft preparation, X.W.; writing review and editing, K.Y.;
supervision, C.S. All authors have read and agreed to the published version of the manuscript.
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