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Abstract: Based on the excellent comprehensive mechanical properties of high–entropy alloy (HEA), the
NiAl-based HEA was designed to achieve excellent high-temperature strength, toughness, and wear
resistance. In this work, vacuum arc melting technology was used to prepare (NiA1)78(CoCrFe)16.5Cu5.5

HEA, and its microstructure, phase composition, and mechanical properties were systematically studied.
The results showed that (NiA1)78(CoCrFe)16.5Cu5.5 HEA was composed of FCC and BCC/B2, with a
spinodal decomposition structure in the matrix, and nano-precipitation in the interdendritic, exhibiting a
good high-temperature performance. At 600 ◦C, the compressive fracture strength is 842.5 MPa and the
fracture strain is 24.5%. When the temperature reaches 800 ◦C, even if the strain reaches 50%, the alloy will
not fracture, and the stress–strain curve shows typical work hardening and softening characteristics. The
wear coefficient of the alloy first increases and then decreases with the increase in temperature in the range
of room temperature to 400 ◦C. However, the specific wear rate shows the opposite trend. At 100 ◦C, the
wear rate reaches the lowest of 7.05 × 10−5 mm3/Nm, and the wear mechanism is mainly abrasive wear.

Keywords: NiAl-based high-entropy alloys; spinodal decomposition; mechanical property; wear

1. Introduction

High-entropy alloys (HEAs) are a rapidly developing new material that is composed
of four or more elements with equal or nearly equal molar ratios [1–3]. Compared with
traditional alloys, the high mixing entropy of HEAs tends to form single-phase solid solution
(δ < 6.6, −15 < ∆Hmix < 5 KJ/mol, 12 < ∆Smix < 17.5 KJ/mol) [3], inhibit the formation
of intermetallic compounds, and provide excellent high-temperature mechanical and wear
properties [4,5]. However, single-phase solid solutions typically do not have excellent plasticity
and strength at the same time. To solve the contradiction between the strength and plasticity
of single-phase HEAs, it is encouraged to relax the strict restrictions on single-phase solid
solutions to achieve excellent comprehensive performance. In recent years, Lu et al. [6]
proposed eutectic high-entropy alloys (EHEAs) and prepared AlCoCrFeNi2.1 EHEAs ingots
with excellent strength and plasticity. In addition, the combination of HEAs with good
strength and ductility can also be obtained by introducing nano-precipitation [7–10]. Based
on this design concept, Jin et al. [11] proposed the use of the pseudo-binary method to design
Al17Co14.3Cr14.3Fe28.6Ni25.8 EHEAs consisting of nanoscale B2 phases and FCC phases, it
shows high strength (1145 MPa) and fracture toughness (10.3%). The above studies are all
aimed at introducing a second phase into a single-phase matrix to improve the comprehensive
performance of the HEA.

It is reported that nickel aluminum (Ni-Al) alloy has high strength, low density, low
cost, and good creep resistance, and is widely used in fields such as aerospace and automo-
tive [12–15]. NASA has also predicted the materials of future aviation generators, among
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which β-NiAl intermetallic compounds have significant advantages in terms of service tem-
perature, antioxidants, and high-temperature structural strength/lifespan. They are one of
the most important and potential materials in high-temperature environments [4,5]. How-
ever, its room temperature brittleness and inadequate strength limit its industry application.
Therefore, this work considers preparing NiAl-based HEAs based on β-NiAl intermetallic
compounds to obtain BCC and FCC dual phase composition. Furthermore, achieved better
comprehensive performance alloys. At present, a common way to improve the property
is alloying NiAl (Co, Cr, Fe, Cu, Mo, Ti, and Hf), such as 52.4Ni-43.5Al-4.1Cr, 51.1Ni-
42.2Al-4.1Cr-2.6Fe, 90Cr-4Ni-6Al, 82Cr-4Ni-6Al-8.0Fe [16], Ni-30Fe-20Al, Ni-30Fe-23Al,
Ni-33Fe-21Al [17], Fe20Co20Ni41Al19 [18], Ni-26Al-50Co, Ni-25Al-18Fe, Ni-24Al-30Cu,
Ni-20Al-20Cr [19], Al0.6CoCrFeNi, Al1.2CoCrFeNi [20], Ti + 10%Al0.6CoCrFeNi [21],
NiAl—28Cr-5.5Mo-0.5Hf(DS) [22], NiAl-12Cr-6Co [23], and NiAl-Cr(Mo)-5Fe [24]. Among
these alloys, the room temperature brittleness of alloys, including Mo/Cr/Fe/Cu/Co, can
be significantly improved, and the strength of alloys NiAl–Cr can be enhanced (Table 1).
Based on this research, for example, the yield strength of Ni50.7Al19.3Co15Cr15 HEAs pre-
pared by Liu et al. [15] reached 789 MPa at 600 ◦C; the yield strength and fracture strength
of NiAl-MoyCryFey (y = 13.33) reached 1854 MPa and 3308 MPa, respectively [25].

Table 1. A brief overview of the property of NiAl alloys [16–24].

Materials (at.%) Yield Strength
(MPa)

Compressive
Strength (MPa)

Compressive Strain
(%)

52.4Ni-43.5Al-4.1Cr - 1026 ± 29 9.3 ± 0.5
51.1Ni-42.2Al-4.1Cr-2.6Fe - 1220 ± 37 11.8 ± 1.4

90Cr-4Ni-6Al - 736 ± 32 6.4 ± 0.7
82Cr-4Ni-6Al-8.0Fe - 964 ± 38 7.4 ± 0.3

Ni-30Fe-20Al 1065 - -
Ni-30Fe-23Al 1120 - -
Ni-33Fe-21Al 1150 - -

Fe20Co20Ni41Al19 577 1103 18.7
Ni-26Al-50Co - - 10.2
Ni-25Al-18Fe - - 6.1
Ni-24Al-30Cu - - 0
Ni-20Al-20Cr - - 2.5

Al0.6CoCrFeNi - 1903.42 21.26
Al1.2CoCrFeNi - 1462.36 18.05

Ti + 10% Al0.6CoCrFeNi - 1642 21.7
NiAl-28Cr-5.5Mo-

0.5Hf(DS) - 255 -

NiAl-12Cr-6Co - 1989 0.11
NiAl-Cr(Mo)-5Fe - 2229 0.29

Previous studies have shown that microalloying can optimize the phase composition and
microstructure of the alloys, thereby improving the mechanical properties of HEAs [26–29].
Miracle et al. [30] comprehensively evaluated experimental data from 408 different alloys
using three datasets, establishing a clear relationship between the composition, microstructure,
and properties of the three-dimensional transition metal, of which Cr is crucial for good
strength. Meanwhile, the addition of Cu elements has the effects of grain refinement [31],
and can promote the formation of wear-resistant glaze layers together with CuO to achieve
high-temperature wear resistance [32]. The microstructure of CoCrCuFeNi series HEAs was
studied by Gao et al. [33], it found that the Cr and Fe elements are conducive to improving
the hardness of the alloy.

Therefore, the (NiA1)78(CoCrFe)16.5Cu5.5 HEAs are designed based on the NiAl binary
system. Their microstructure, mechanical properties, and friction and wear properties
at room and high temperatures were studied through XRD, EDS, SEM, and EBSD. It
provides a new design approach for NiAl-based high-temperature alloys and promotes the
high-temperature application of HEAs.
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2. Experimental Procedures

Al, Co, Cr, Fe, Ni, and Cu (purity of 99.99 wt%, Beijing Dream Material Technology
Co., Ltd. Beijing, China) were used as raw materials, and (NiA1)78(CoCrFe)16.5Cu5.5 (at%)
HEAs alloy ingots (100 g, collar button shape) were prepared in a vacuum arc melting
furnace (DHL-500 II, solidification rate 102–105 K/s) under a high-purity argon atmosphere.
X-ray fluorescence (XRF, S2 PUMA Series II) spectrometry is applied in the determination
of elemental compositions (Table 2). Each alloy ingot is re-melted five times to ensure that
the alloy composition was homogeneous. The ingots were cut using wire cutting, followed
by grinding and polishing. Then, the microstructure, phase composition, and chemical
composition of the sample are analyzed by a scanning electron microscope (SEM, Hitachi
SU8010) with an energy dispersion spectrometer (EDS) at a voltage of 15 kV. An X-ray
diffraction meter (XRD, Rigaku D/max RB) was used to qualitatively analyze the crystal
structure of the alloy to identify the phase composition. The radiation source is Cu-kα ray,
the wide-angle diffraction test is 25–90◦, and the test rate is 5◦/min.

Table 2. The chemical composition of the (NiA1)78(CoCrFe)16.5Cu5.5 HEAs after XRF analysis.

Ni Al Co Cr Fe Cu

wt.% 49.67 22.84 7.03 6.21 6.67 7.58
at.% 39 39 5.5 5.5 5.5 5.5

A compression sample with a length of 10 mm and a diameter of 6 mm was prepared
by wire cutting, and the surface of the cylinder was polished to 1500 mesh with SiC
sandpaper. The MTS hydraulic servo test system is used for room-temperature (25 ◦C)
and high-temperature (600 ◦C and 800 ◦C) compression tests (Figure 1). All samples were
tested three times to obtain the average value. After the compression test, the fracture
morphology and crack propagation of the alloy were observed with SEM. The electron
backscatter diffraction (EBSD) under 20 Kv accelerated current to determine the relationship
between microstructure and mechanical properties.
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Figure 1. Compression and its local schematic diagram. Figure 1. Compression and its local schematic diagram.

In addition, we tested the wear behaviors by a HT-1000 tribology tester (Lanzhou
Zhongke Kaihua Co., Ltd. Lanzhou, China) using a Si3N4 ball with a size of Φ4 mm as the
grinding pair. During the experiment, the parameters were set as: load 10 N, wear trajectory
radius 2 mm, motor speed 600 r/min, sliding time 30 min, and temperature 25–400 ◦C. The
friction coefficient was recorded during the sliding process. After the wear test, the wear
volume (WV) was determined by KEYENCE three-dimensional surface profile measuring
instrument. The morphologies and compositions of the wear scars were examined by SEM
and EDS, respectively.
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3. Results and Discussion
3.1. Microstructure and Phase Composition

Figure 2 shows the XRD diffraction pattern of (NiA1)78 (CoCrFe)16.5Cu5.5 HEAs. It
can be seen that the alloy has two crystal structures, i.e., FCC and BCC, and it is a typical
dual-phase alloy. At 2θ = 36.8◦ and 43.1◦, the diffraction peaks represent the FCC phase,
while the BCC phase mainly occurred at 2θ = 44.6◦, 64.9◦, and 82.2◦ positions. In addition,
the B2 phase was also detected at θ = 30.7◦.
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Figure 2. XRD patterns of (NiA1)78(CoCrFe)16.5Cu5.5 HEAs.

Figure 3 shows the microstructure and map scanning results of (NiA1)78(CoCrFe)
16.5Cu5.5 HEAs. The microstructure of the alloy exhibits a typical dendritic morphol-
ogy, with the gray phase distributed in the dendritic region and the white phase dis-
tributed in the interdendritic region (Figure 3a,b). Through local magnification observations
(Figure 3c), it is found that the gray phase has a plate strip shape, which belongs to a typical
spinodal decomposition structure. The microstructure of AlCrFeCoNiCu was studied by
Ping et al. [34], which indicates that the spinodal decomposition structure was distributed
alternately by the A2 phase and B2 phase. The AlxCoCrCuFeNi HEAs with different
Al contents were studied by Liu Yuan et al. [35], it found that spinodal decomposition
structure can improve the strength of the alloy due to its high arrangement density [36].
It can also be found from Figure 3c that there are a large number of precipitations distri-
bution in the interdendritic. In order to further analyze the elemental distribution, EDS
map scanning analysis was performed (Figure 3d), and it can be clearly observed that
dendrites are enriched with Al, Co, Cr, and Fe elements, while Cu and Ni elements are
enriched in the interdendritic region, which is due to the significant difference in the mixing
enthalpy between Cu element and Al, Co, Cr, and Fe. The mixing enthalpy with Cr and
Fe elements has exceeded 10 KJ/mol. However, the mixing enthalpy of Ni-Cu and Ni-Al
is relatively small, and the binding energy of Ni element with other elements is relatively
poor. At the same time, the content of Ni and Al elements is relatively high. Therefore,
dendrites and interdendritic phases coexist. Based on the XRD results, it can be concluded
that the structure of dendrite is BCC and the interdendritic is FCC. Furthermore, in the
interdendritic, there are spherical precipitation phases which are enriched with Cr and Fe.
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3.2. Mechanical Properties
3.2.1. Compression Property

Figure 4 shows the compression stress–strain curve of (NiA1)78(CoCrFe) 16.5Cu5.5
HEAs at different temperatures and the compression fracture morphology at room tem-
perature and 600 ◦C. Insets of Figure 4a,b summarize the compressive strength and strain.
As shown in Figure 4a, (NiA1)78(CoCrFe) 16.5Cu5.5 HEAs have a compressive strength of
1039.9 MPa at room temperature and a fracture strain of 0.9%. When the test temperature
reaches 600 and 800 ◦C (Figure 4b), the yield strength gradually decreases with the increase
in temperature, while the fracture strain shows the opposite trend. At 600 ◦C, the alloy
still maintains high compressive strength and exhibits good plasticity. Further increas-
ing the test temperature to 800 ◦C, the sample did not fracture even under compression
strain exceeding 50%, indicating that HEA has excellent high-temperature plasticity. To
further analyze the relationship between compression performance and microstructure,
SEM was performed on the fracture surface. The compression fracture morphology at room
temperature is shown in Figure 4c,d. The fracture surface is relatively rough, containing
a large number of tearing edges, which also can clearly observe river-like patterns and
cracks. It indicates that the fracture mechanism of the alloy exhibits a typical quasi-cleavage
fracture. Generally, only cold brittle metals can undergo cleavage fracture. Yuan et al. [36]
have shown that Al plays a role of solid solution strengthening. Combined with the brittle
structure of the BCC phase in XRD, higher hardness will cause a tearing effect on the
matrix, when bearing the load, it is easy to form local stress concentration, which can
promote the generation and propagation of cracks, leading to a decrease in the strength
and elongation. From Figure 4e,f, it can be seen that the morphology of the fracture surface
after high-temperature compression at 600 ◦C is granular, and a small number of cracks
appear. According to the path of crack propagation, it indicates that the cracks have both
intergranular and transgranular fractures. The main reason is that the grain boundary
strength of HEAs decreases under high-temperature and high-stress environments, and
the sliding and diffusion of grain boundaries are relatively sufficient, resulting in changes
in the structure and strength of grain boundaries. When stress is concentrated near the
grain boundary, the material at the grain boundary often softens due to creep, leading
to fracture and promoting the formation and development of voids and cracks along the
grain boundary.
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temperatures: (c,d) RT; (e,f) 600 ◦C.

Figure 5 shows the EDS map scanning results and compression fracture after polishing
of (NiA1)78(CoCrFe)16.5Cu5.5 HEAs after compression at different temperatures. As the
temperature increases, the microstructure after compression at room temperature and
600 ◦C exhibits both transgranular and intergranular fractures, with only intergranular
fractures at 800 ◦C. Compared with the map scanning results in Figure 3, the Cr and Fe
elements gather near the interdendritic and enrich and grow at 600 and 800 ◦C after com-
pression, while the Ni elements become uniformly distributed in the dendrite. Meanwhile,
the precipitations enriched in Cr and Fe in the FCC phase have grown. Furthermore,
according to the SEM results, it can be seen that when transgranular cracks encounter
(Cr, Fe)-rich phases, deflection occurs. The results indicate that under the effect of pressure,
Cu segregation between dendrites weakens, and (Cr, Fe)-rich nano precipitates aggregate
and grow into irregular blocks. When the compression temperature increases to 600 ◦C, the
size of interdendritic (Cr, Fe)-rich phases decreases, indicating that high temperatures can
promote the diffusion and homogenization of Cr and Fe elements. When the compression
temperature increases to 800 ◦C, the precipitation of interdendritic (Cr, Fe)-rich phases
gradually presents a continuous distribution between the dendrites, resulting in a decrease
in intergranular bonding force and intergranular fracture under external forces.

The X-ray diffraction pattern of (NiA1)78 (CoCrFe)16.5Cu5.5 HEAs is shown in Figure 6.
By comparing the XRD results after compression at room temperature and 800 ◦C. The
results show that the (NiA1)78 (CoCrFe)16.5Cu5.5 HEAs still exhibit dual phases of BCC and
FCC after 800 ◦C compression. However, as the temperature increases, it can be observed
that the diffraction peak intensity of BCC and B2 lattices increases, while the diffraction peak
intensity of FCC lattices decreases. During the hot processing of metal materials, dynamic
recovery or recrystallization may occur. In order to further investigate the relationship
between the microstructure and mechanical properties of (NiA1)78 (CoCrFe)16.5Cu5.5 HEAs
after high-temperature compression at 800 ◦C, the EBSD technology was used. Figure 7
shows the reverse pole diagram (IPF diagram), DefRex diagram, local dislocation misorien-
tation, and grain boundary distribution diagram of (NiA1)78 (CoCrFe)16.5Cu5.5 HEAs. The
IPF in Figure 7a shows that there is no obvious texture formation in the compressed grain at
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800 ◦C, and the orientation distribution is random. In the DefRex diagram, blue represents
substructure, red represents deformed grains, and yellow represents recrystallized grains.
As shown in Figure 7b, a small amount of subgrains and recrystallized grains appear inside
the original deformed grains. In Figure 7c, it can be observed that there is severe plastic de-
formation in the [111] and [001] textures, resulting in a higher dislocation density. Figure 7d
shows that most of the grain boundaries have a small angle, containing many deformed
grains inside the material. The distribution of large-angle grain boundaries indicates that
the grains also undergo dynamic recrystallization during the compression process, but the
recrystallization process is incomplete and there are many original grains. The formation of
substructures requires the consumption and absorption of some dislocations, while there is
basically no dislocation formation inside the recrystallized grains. Recrystallization can
restore the plasticity of the material, and eliminate the texture and stress generated by
deformation. In addition, BCC is mostly strain-free after high-temperature compression,
plastic strain is regulated by the FCC phase [37]. Based on the above analysis, it can be seen
that the BCC phase can restore some strength and plasticity of the material, but usually
does not completely eliminate deformation. The FCC phase can improve the uniformity
of microstructure and is more effective in improving strength and toughness. Dual-phase
HEAs undergo dynamic recovery and recrystallization of metal materials at higher temper-
atures and lower strain rates, resulting in increased strength and plasticity of the material
itself. The work hardening process and dynamic softening process reach equilibrium, and
finally, the stress–strain curve reaches a steady state under compression at 800 ◦C.
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3.2.2. Wear Behavior

Figure 8 shows the hardness values of the unworn (adjacent to the worn surface)
and worn surfaces after being tested at different temperatures. The hardness of the worn
surface reaches its maximum value at 200 ◦C. However, the hardness of the unworn surface
increases with the increase in test temperature. Figure 9 shows the wear friction coefficient
and three-dimensional track morphology of (NiA1)78(CoCrFe)16.5Cu5.5 HEAs after being
tested at different temperatures. Table 3 shows the wear volume and wear rate of the
HEAs. The relationship curve between the wear coefficient and sliding time at different
temperatures is shown in Figure 9a. The wear coefficient curve of (NiA1)78(CoCrFe)16.5Cu5.5
HEAs at 25–200 ◦C is relatively stable. As the temperature increases to 400 ◦C, the wear
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coefficient curve of the alloy shows a trend of first increasing and then decreasing, the
wear coefficient reaches its highest value (0.211) at 100 ◦C. It is related to the formation and
destruction of the oxide film on the surface. In the early stage of testing, the contact surface
continuously generates a more uniform oxide film than at low temperatures, providing
good lubrication and minimizing the friction coefficient of the alloy. As the experiment
progresses, the worn surface continuously oxidizes until an oxide glaze is formed. The
bonding force between the oxide glaze and the alloy matrix is low, and it is easy to detach
from the alloy surface under the cyclic load, which is in turn increases the friction coefficient
and the wear rate. Meanwhile, the average friction coefficient has a small change, ranging
from 0.169 to 0.211. Figure 9b–e show the morphology of the alloy wear tracks. At room
temperature (RT), the wear surface is smooth, and the specific wear rate first decreases and
then increases with the increase in temperature throughout the entire test. At 400 ◦C, the
wear rate increases to 1.77 × 10−4 mm3/Nm, the wear rate decreases to the lowest level of
7.05 × 10−5 mm3/N m at 100 ◦C indicates a better anti-friction effect at 100 ◦C (Table 3).
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Figure 10 shows the wear track microstructure of the (NiA1)78(CoCrFe)16.5Cu5.5 HEAs
after wear tested from RT to 400 ◦C. There is a large number of debris and a small number
of grooves on the worn surface (Figure 10a). This is caused by the detachment of debris
from the worn surface and the transfer of adhering particles to the hard material surface,
which will have a plowing effect on the soft metal during the wear process. However,
the worn surface around the grooves is relatively intact. Therefore, its wear mechanism
can be considered mild abrasive wear. As the temperature increases to 100 ◦C, the wear
track microstructure becomes smoother and the shallow grooves decrease, as shown in
Figure 10b. When the temperature continues to rise to 200 ◦C (Figure 10c), from the analysis
results of the compression experiment in Section 3.2.1, it can be seen that the grain boundary
strength of the alloy decreases with the increase in temperature. Therefore, hard abrasive
debris is more likely to be pulled out of the matrix under the cyclic action of shear stress,
exacerbating abrasive wear. When the temperature reaches 400 ◦C (Figure 10d), along the
sliding direction, the worn surface exhibits a large number of plastic deformations plow
shaped grooves and peeling pits. It indicates that further intensification of abrasive wear.
The pits on the worn surface are usually related to adhesive wear, which means that the
alloy undergoes slight softening at 400 ◦C, and hard abrasive particles are more likely
to scratch the metal surface, leading to an increase in wear rate. Table 4 shows the EDS
element content analysis at the worn surface after the wear test at different temperatures,
indicating that oxidation occurred at all temperatures. The wear resistance of alloys is
related to two factors: one is the formation rate and protective ability of the oxide film,
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and the other is the detachment of hard abrasive particles. The research of Mei et al. [38]
showed that with the increase in Cu content in AlTiVCuN alloys, the external diffusion of
Cu promotes the formation of CuO oxides at high temperatures. In particular, at 600 ◦C,
with the increase in Cu content, the friction coefficient decreased from 0.90 to 0.45, and then
rebounded to 0.54, which is attributed to the reduction in the AlVO4 phase and the increase
in the CuO phase. The study by Liu et al. [15] also showed that Cu undergoes oxidation
at high temperatures, and the generated wear-resistant CuO glaze layer can suppress
adhesion wear. It indicates that after the detachment of small particles during sliding, the
CuO film formed by adding Cu can promote the formation of the wear-resistant glaze layer,
serving as a lubricant. Therefore, at 100 ◦C, the alloy achieves good balance and achieves
good wear resistance. Thus, the worn surface is relatively smooth. As the temperature
increases to 200 ◦C, the nano precipitates of (Cr, Fe)-rich elements in the Cu-rich region
at the grain boundary aggregate and grow, the damage ability of hard particles exceeds
the protective ability of the oxide film, resulting in a large number of plastic deformations
plow shaped grooves and peeling pits on the worn surface. When the temperature reaches
400 ◦C, the thickness of the oxide film exceeds the critical value for detachment, resulting
in severe oxidative wear. Furthermore, the further weakening of grain strength leads to the
easier generation of hard particles. Therefore, the worn surface of the alloy exhibits severe
abrasive wear and the highest wear rate.
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Table 3. Wear data of (NiA1)78(CoCrFe)16.5Cu5.5 HEAs at different temperatures.

Temperature Wear Volume (mm3)
Specific Wear Rate

(mm3/Nm)
Line Wear Rate

(mm3/km)

RT 1.70 × 10−1 7.53 × 10−5 0.38
100 ◦C 1.59 × 10−1 7.05 × 10−5 0.36
200 ◦C 1.74 × 10−1 7.69 × 10−5 0.39
400 ◦C 4.00 × 10−1 1.77 × 10−4 0.90
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Table 4. EDS analysis of worn surface after wear test at different temperatures.

Temperature Al Ni Co Cr Cu Fe O

25 ◦C 17.00 26.06 2.65 2.62 7.64 2.53 41.48
100 ◦C 23.94 15.26 2.56 3.10 6.74 3.11 45.30
200 ◦C 22.48 20.93 3.04 3.00 9.42 3.02 38.11
400 ◦C 19.06 16.68 2.33 2.15 6.86 2.49 50.42

4. Conclusions

In this work, the (NiA1)78(CoCrFe)16.5Cu5.5 HEA was designed based on Ni-Al alloy.
The microstructure and phase composition were analyzed by XRD, SEM, EDS, and EBSD.
Meanwhile, the mechanical properties and wear behavior at RT and high temperatures
were studied. Based on the above analysis and results, the main conclusions are as follows:

1. (NiA1)78(CoCrFe)16.5Cu5.5 HEAs have a dendritic structure, with the gray BCC phase
as the matrix and the white FCC phase at the interdendritic. Spinodal decomposition
structure appears in the matrix, and (Cr, Fe) rich nano-precipitation in the FCC phase.

2. The compression test shows that the (NiA1)78(CoCrFe)16.5Cu5.5 HEAs exhibits good com-
prehensive properties at 600 ◦C. Dynamic recovery and recrystallization occur at 800 ◦C.

3. As the temperature of the wear test increases from RT to 400 ◦C, the surface grooves
and plastic deformation of (NiA1)78(CoCrFe)16.5Cu5.5 HEAs increase, while the peel-
ing and debris decrease. The wear mechanism is mainly abrasive wear.
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