The Impact of Various Superalloys on the Oxidation Performance of Nanocrystalline Coatings at High Temperatures
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Microstructure of the as-Deposited Nanocrystalline Coatings
3.2. Oxidation Kinetics
3.3. Oxidation Behavior
4. Discussion
4.1. The Oxidation Behavior of Nanocrystalline Coatings
4.2. The Influence of Reactive Element Zr in the Superalloy K38
5. Conclusions
- (1)
- The K38-N5 had better high-temperature oxidation resistance than that of N5-N5. The presence of the Ta-rich phase accelerates the oxidation rate of N5-N5;
- (2)
- No interdiffusion occurred in K38-N5. The phase equilibrium between the nanocrystalline coating and the K38 superalloy suppresses interdiffusion.
- (3)
- The presence of Zr enhanced the oxidation resistance of K38-N5 and improved the adhesion of the oxide scale.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Padture, N.; Gell, M.; Jordan, E.H. Thermal barrier coatings for gas-turbine engine applications. Science 2002, 296, 280–284. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Sun, C.; Ji, H.; Yang, M.; Zhang, H.; Tian, W.; Wu, Y.; Tolochko, O.; Wang, Y. A review of CNTs and graphene reinforced YSZ nanocomposites: Preparation, mechanical and anti-irradiation properties. J. Mater. Sci. Technol. 2023, 167, 27–49. [Google Scholar] [CrossRef]
- Zhang, B.; Zheng, S.; Dong, J.; Yin, W.; Wu, H.; Tian, L.; Liu, G. Effect of pre-heat-treatment on the oxidation resistance of MCrAlY coatings: A review. Coatings 2023, 13, 1222. [Google Scholar] [CrossRef]
- Zhang, Y.; Xiao, L.; Zeng, D.; Li, X.; Zhou, X.; Zhao, G.; He, W.; Li, S.; Xiao, Y.; Zhao, X.; et al. A novel niobium based oxidation protective coating with three lines of defense at ultra-high temperature. Corros. Sci. 2022, 206, 110515. [Google Scholar] [CrossRef]
- Wang, M.; Cheng, X.; Jiang, W.; Cao, T.; Liu, X.; Lu, J.; Zhang, Y.; Zhang, Z. The effect of amorphous coating on high temperature oxidation resistance of Ni-based single crystal superalloy. Corros. Sci. 2023, 213, 111000. [Google Scholar] [CrossRef]
- Fang, H.; Wang, W.; Huang, J.; Ye, D. Investigation of CMAS resistance of sacrificial plasma-sprayed mullite-YSZ protective layer on 8YSZ thermal barrier coating. Corros. Sci. 2020, 173, 108764. [Google Scholar] [CrossRef]
- Elsaß, M.; Frommherz, M.; Scholz, A.; Oechsner, M. Interdiffusion in MCrAlY coated nickel-base superalloys. Surf. Coat. Technol. 2016, 307, 565–573. [Google Scholar] [CrossRef]
- Burman, C.; Ericsson, T.; Kvernes, I.; Lindblom, Y. Coatings with lenticular oxides preventing interdiffusion. Surf. Coat. Technol. 1987, 32, 127–140. [Google Scholar] [CrossRef]
- Richard, C.S.; Beranger, G.; Lu, J.; Flavenot, J.F. The influences of heat treatments and interdiffusion on the adhesion of plasma-sprayed NiCrAlY coatings. Surf. Coat. Technol. 1996, 82, 99–109. [Google Scholar] [CrossRef]
- Kane, K.A.; Pillai, R.R.; Lance, M.J.; Pint, B.A. Long term oxidation of NiCoCrAlY coated Ni-based superalloys: A comparison of observed and simulated interdiffusion. Corros. Sci. 2023, 219, 111213. [Google Scholar] [CrossRef]
- Angenete, J.; Stiller, K.; Bakchinova, E. Microstructural and microchemical development of simple and Pt-modified aluminide diffusion coatings during long term oxidation at 1050 °C. Surf. Coat. Technol. 2004, 176, 272–283. [Google Scholar] [CrossRef]
- Zhang, Z.; Gleeson, B.; Jung, K.; Li, L.; Yang, J.C. A diffusion analysis of transient subsurface γ′-Ni3Al formation during β-NiAl oxidation. Acta Mater. 2012, 60, 5273–5283. [Google Scholar] [CrossRef]
- Yu, M.; Sun, Q.; Wang, Q.; Li, X.; Zhou, D.; Pu, J.; Chen, B.; Li, C. Effect of Pt-doping on the oxidation behaviors of the γ’-Ni3Al and β-NiAl phases in the NiSiAlY alloy. Corros. Sci. 2022, 200, 110224. [Google Scholar] [CrossRef]
- Sato, A.; Aoki, A.; Arai, M.; Harada, H. Effect of aluminide coating on creep properties of Ni-base single crystal superalloys. J. Jpn. Inst. Met. Mater. 2007, 71, 320–325. [Google Scholar] [CrossRef]
- Wang, J.; Chen, M.; Yang, L.; Sun, W.; Zhu, S.; Wang, F. Nanocrystalline coatings on superalloys against high temperature oxidation: A review. Corros. Com. 2021, 1, 58–69. [Google Scholar] [CrossRef]
- Wang, J.; Chen, M.; Zhu, S.; Wang, F. Ta effect on oxidation of a nickel-based single-crystal superalloy and its sputtered nanocrystalline coating at 900–1100 °C. Appl. Surf. Sci. 2015, 345, 194–203. [Google Scholar] [CrossRef]
- Wang, J.; Chen, M.; Yang, L.; Liu, L.; Zhu, S.; Wang, F.; Meng, G. The effect of yttrium addition on oxidation of a sputtered nanocrystalline coating with moderate amount of tantalum in composition. Appl. Surf. Sci. 2016, 366, 245–253. [Google Scholar] [CrossRef]
- Klein, L.; Bauer, A.; Neumeier, S.; Goken, S.; Virtanen, S. High temperature oxidation of γ/γ′-strengthened Co-base superalloys. Corros. Sci. 2011, 53, 2027–2034. [Google Scholar] [CrossRef]
- Meng, B.; Wang, J.; Yang, L.; Chen, M.; Zhu, S.; Wang, F. On the rumpling mechanism in nanocrystalline coatings: Improved by reactive magnetron sputtering with oxygen. J. Mater. Sci. Technol. 2023, 132, 69–80. [Google Scholar] [CrossRef]
- Wang, J.; Meng, B.; Sun, W.; Yang, L.; Chen, M.; Wang, F. Studies on the oxidation behavior of a designed nanocrystalline coating on K38 alloy at 1050 °C. Coatings 2020, 10, 1188. [Google Scholar] [CrossRef]
- Wagner, C. Theoretical analysis of the diffusion processes determining the oxidation rate of alloys. J. Electrochem. Soc. 1952, 99, 369–380. [Google Scholar] [CrossRef]
- Wagner, C. Reaktionstypen bei der Oxydation von Legierungen. Z. Elektrochem. 1959, 63, 772–790. [Google Scholar] [CrossRef]
- Sato, A.; Hiroshi, H.; Kawagishi, K. Development of a new bond coat “EQ coating” system. Metall. Mater. Trans. A 2006, 37, 789–790. [Google Scholar] [CrossRef]
- Duan, W.; Huang, B.; Li, Y.; Huang, X.; Zhou, M.; Qiang, W. Hf and Ta co-doping MCrAlY alloy to improve the lifetime of coatings. Surf. Coat. Technol. 2023, 468, 129781. [Google Scholar] [CrossRef]
- Tang, C.; Shi, H.; Jianu, A.; Weisenburger, A.; Victor, G.; Grosse, M.; Müller, G.; Seifert, H.J.; Steinbrück, M. High-temperature oxidation of AlCrFeNi-(Mn or Co) high-entropy alloys: Effect of atmosphere and reactive element addition. Corros. Sci. 2021, 192, 109809. [Google Scholar] [CrossRef]
- Du, Y.; Ding, D.; Lai, L.; Xiao, S.; Guo, N.; Song, B.; Guo, S. Effect of Y on the high-temperature oxidation behavior of CrMoTaTi refractory high entropy alloy. Int. J. Refract. Met. Hard Mater. 2022, 103, 105755. [Google Scholar] [CrossRef]
- Xi, X.; Kong, C.; Zhang, J. Effect of Cyclic Reaction on Corrosion Behavior of Chromium-Containing Alloys in CO2 Gas at 650 °C. Oxid. Met. 2020, 93, 131–157. [Google Scholar] [CrossRef]
- He, J.; Zhang, Z.; Peng, H.; Gong, S.; Guo, H. The role of Dy and Hf doping on oxidation behavior of two-phase (γ′+β) Ni-Al alloys. Corros. Sci. 2015, 98, 699–707. [Google Scholar] [CrossRef]
- Bautista, A.; Velasco, F.; Abenojar, J. Oxidation resistance of sintered stainless steels: Effect of yttria additions. Corros. Sci. 2003, 45, 1343–1354. [Google Scholar] [CrossRef]
- Chevalier, S.; Nivot, C.; Larpin, J.P. Influence of reactive element oxide coatings on the high temperature oxidation behavior of alumina-forming alloys. Oxid. Met. 2004, 61, 195–217. [Google Scholar] [CrossRef]
- Funkenbusch, A.W.; Smeggil, J.G.; Bornstein, N.S. Reactive element-sulfur interaction and oxide scale adherence. Metall. Trans. A 1985, 16, 1164–1166. [Google Scholar] [CrossRef]
- Pendse, R.; Stringer, J. The influence of alloy microstructure on the oxide peg morphologies in a Co-10% Cr-11%Al alloy with and without reactive element additions. Oxid. Met. 1985, 23, 1–16. [Google Scholar] [CrossRef]
- Chevalier, S.; Bonnet, G.; Larpin, J.P.; Colson, J.C. The combined effect of refractory coatings containing reactive elements on high temperature oxidation behavior of chromia-forming alloys. Corros. Sci. 2003, 45, 1661–1673. [Google Scholar] [CrossRef]
- Yang, L.; Zheng, Y.; Wan, C.L.; Gong, Q.M.; Zhang, C.; Chen, H.; Yang, Z.G. Characteristics of oxide pegs in Ti-and Y-doped CoNiCrAl alloys at 1150 °C. Rare Met. 2021, 40, 2059–2064. [Google Scholar] [CrossRef]
- Mendis, B.G.; Livi, K.J.T.; Hemker, K.J. Observations of reactive element gettering of sulfur in thermally grown oxide pegs. Scr. Mater. 2006, 55, 589–592. [Google Scholar] [CrossRef]
- Nijdam, T.J.; Sloof, W.G. Effect of reactive element oxide inclusions on the growth kinetics of protective oxide scales. Acta Mater. 2007, 55, 5980–5987. [Google Scholar] [CrossRef]
- Sun, T.; Guo, Z.; Cao, J.; Liang, Y.; Lin, J. Isothermal oxidation behavior of high-Nb-containing TiAl alloys doped with W, B, Y, and C/Si. Corros. Sci. 2023, 213, 110980. [Google Scholar] [CrossRef]
- Hu, J.; Gu, C.; Li, J.; Li, C.; Feng, J.; Jiang, Y. Microstructure and oxidation behavior of the Y/Ta/Hf co-doped AlCoCrFeNi high-entropy alloys in air at 1100 °C. Corros. Sci. 2023, 212, 110930. [Google Scholar] [CrossRef]
- Xiao, H.; Sun, J.; Li, W.; Liu, S.B.; Fu, L.B.; Jiang, S.M. Effect of Pt on the microstructure and oxidation behavior of NiCrAlYSi+AlY coating on a Ni-based superalloy. Corros. Sci. 2022, 194, 109916. [Google Scholar] [CrossRef]
- Pan, Y.; Lu, X.; Hayat, M.D.; Yang, F.; Liu, C.; Li, Y.; Li, X.; Xu, W.; Qu, X.; Cao, P. Effect of Sn addition on the high-temperature oxidation behavior of high Nb-containing TiAl alloys. Corros. Sci. 2020, 166, 108449. [Google Scholar] [CrossRef]
- Mennicke, C.; He, M.Y.; Clarke, D.R.; Smith, J.S. The role of secondary oxide inclusions (“pegs”) on the spalling resistance of oxide films. Acta Mater. 2000, 48, 2941–2949. [Google Scholar] [CrossRef]
Ni | C | Cr | Co | W | Mo | Al | Ti | Fe | Nb | Ta | Zr | Re | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Superalloy K38 | Bal | 0.1–0.2 | 15.7–16.3 | 8–9 | 2.4–2.8 | 1.5–2 | 3.2–3.7 | 3.0–3.5 | ≤0.5 | 0.6–1.1 | 1.5–2.0 | 0.05–0.15 | |
Superalloy N5 | Bal | 7.0 | 7.5 | 5.0 | 1.5 | 6.2 | 6.5 | 3.0 | |||||
Nanocrystalline coating | Bal | 7.0 | 7.5 | 5.0 | 1.5 | 6.2 | 6.5 | 3.0 |
Elements | O | Al | Ta | Zr | Other | |
---|---|---|---|---|---|---|
K38-N5 | Point 1 | 36.3 | 45.7 | 17.3 | 0.7 | |
Point 2 | 54.2 | 44.9 | 0.9 | |||
N5-N5 | Point 3 | 45.0 | 44.9 | 8.2 | 1.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meng, B.; Yang, S.; Zhao, J.; Wang, J.; Chen, M.; Wang, F. The Impact of Various Superalloys on the Oxidation Performance of Nanocrystalline Coatings at High Temperatures. Coatings 2023, 13, 1770. https://doi.org/10.3390/coatings13101770
Meng B, Yang S, Zhao J, Wang J, Chen M, Wang F. The Impact of Various Superalloys on the Oxidation Performance of Nanocrystalline Coatings at High Temperatures. Coatings. 2023; 13(10):1770. https://doi.org/10.3390/coatings13101770
Chicago/Turabian StyleMeng, Bo, Shasha Yang, Jing Zhao, Jinlong Wang, Minghui Chen, and Fuhui Wang. 2023. "The Impact of Various Superalloys on the Oxidation Performance of Nanocrystalline Coatings at High Temperatures" Coatings 13, no. 10: 1770. https://doi.org/10.3390/coatings13101770
APA StyleMeng, B., Yang, S., Zhao, J., Wang, J., Chen, M., & Wang, F. (2023). The Impact of Various Superalloys on the Oxidation Performance of Nanocrystalline Coatings at High Temperatures. Coatings, 13(10), 1770. https://doi.org/10.3390/coatings13101770