The Tribological Properties of Low-Sulfur and Low-Phosphorus Halogen-Free Ionic Liquids as Lubricants for the Nickel-Based Alloy Inconel 690
Abstract
:1. Introduction
2. Experimental Procedure
2.1. Synthesis of ILs
2.2. Physicochemical Properties
2.3. Tribological Properties
2.4. Characterization
3. Results and Discussion
3.1. Viscosity Temperature Performance
3.2. Thermal Stability
3.3. Tribological Properties
3.3.1. Tribological Properties at 50 °C
3.3.2. Tribological Properties at 150 ℃
3.3.3. Effect of Load on the Tribological Properties
3.3.4. Effect of Temperature on the Tribological Properties
3.4. Characterization
3.5. XPS
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, X.; Zheng, J.; Li, Y.; Xiao, J.; Guo, B.; Liu, C. Modeling and experimental investigation of drilling force for low-frequency axial vibration-assisted BTA deep hole drilling. J. Adv. Manuf. Technol. 2020, 111, 1721–1733. [Google Scholar] [CrossRef]
- Guo, B.; Li, Y.; Zheng, J.; Li, F.; Li, X.; Du, X.; Yuan, L. Tribological properties of a halogen-free ionic liquid for Inconel 690–tungsten carbide contact. Tribol. Int. 2021, 163, 107153. [Google Scholar] [CrossRef]
- Anwar, S.; Khan, N.; Khan, S.; Raza, S. One-Step High-Speed Finish Drilling of Inconel 718 Superalloy via Novel Inserts. Processes 2023, 11, 752. [Google Scholar] [CrossRef]
- Ceritbinmez, F.; Günen, A.; Gürol, U.; Çam, G. A comparative study on drillability of Inconel 625 alloy fabricated by wire arc additive manufacturing. J. Manuf. Process. 2023, 89, 150–169. [Google Scholar] [CrossRef]
- Naresh Babu, M.; Anandan, V.; Dinesh Babu, M. Performance of ionic liquid as a lubricant in turning inconel 825 via minimum quantity lubrication method. J. Manuf. Process. 2021, 64, 793–804. [Google Scholar] [CrossRef]
- Mousavi, S.; Heris, S. Experimental investigation of ZnO nanoparticles effects on thermophysical and tribological properties of diesel oil. Int. J. Hydrogen Energy 2020, 45, 23603–23614. [Google Scholar] [CrossRef]
- Mousavi, S.; Heris, S.; Hosseini, M. Experimental investigation of MoS2/diesel oil nanofluid thermophysical and rheological properties. Int. Commun. Heat Mass Transf. 2019, 108, 104298. [Google Scholar] [CrossRef]
- Szwajka, K.; Zielinska-Szwajka, J.; Zaba, K.; Trzepiecinski, T. An Investigation of the Sequential Micro-Laser Drilling and Conventional Re-Drilling of Angled Holes in an Inconel 625 Ni-Based Alloy. Lubricants 2023, 11, 384. [Google Scholar] [CrossRef]
- Tang, Q.; Zhao, Z.; Li, T.; Ge, L.; Xu, H.; Liu, L.; Dong, J. Methyl oleate-alkylated tetralin with dual-functional groups as base oil with PAO to improve the performance of lithium-based grease. Tribol. Lett. 2023, 71, 104. [Google Scholar] [CrossRef]
- Wang, R.; Sun, C.; Yan, X.; Guo, T.; Xiang, W.; Yang, Z.; Yu, Q.; Yu, B.; Cai, M.; Zhou, F. Influence of the molecular structure on the tribological properties of choline-based ionic liquids as water-based additives under current-carrying lubrication. J. Mol. Struct. 2023, 369, 120868. [Google Scholar] [CrossRef]
- Guo, H.; Stoyanovich, B.; Pang, J.; Iglesias, P. Lubricating Ability of Protic Ionic Liquids as Additives to a Biodegradable Oil for Aluminum-Steel Contact: Effect of Alkyl Chain Length and Propensity to Hydrogen Bonding. Lubricants 2023, 11, 329. [Google Scholar] [CrossRef]
- Ahmadi, N.; Rezazadeh, S. An Innovative Approach to Predict the Diffusion Rate of Reactant’s Effects on the Performance of the Polymer Electrolyte Membrane Fuel Cell. Mathematics 2023, 11, 4094. [Google Scholar] [CrossRef]
- Gulzar, M.; Masjuki, H.H.; Kalam, M.A.; Varman, M.; Zulkifli, N.W.M.; Mufti, R.A.; Rehan, Z. Tribological performance of nanoparticles as lubricating oil additives. J. Nanopart. Res. 2016, 18, 223. [Google Scholar] [CrossRef]
- Ye, C.; Liu, W.; Chen, Y.; Yu, L. Room-temperature ionic liquids: A novel versatile lubricant. Chem. Commun. 2001, 21, 2244–2245. [Google Scholar] [CrossRef] [PubMed]
- Zhou, F.; Liang, Y.; Liu, W. Ionic liquid lubricants: Designed chemistry for engineering applications. Chem. Soc. Rev. 2009, 38, 2590–2599. [Google Scholar] [CrossRef]
- Zhao, J.; Huang, Y.; He, Y.; Shi, Y. Nanolubricant additives: A review. Friction 2021, 9, 891–917. [Google Scholar] [CrossRef]
- Fan, Z.; Xiang, Z.; Tang, B.; Chen, W.; Qian, H.; Mo, J.; Zhou, Z. Effect of surface modification on the tribological properties of friction blocks in high-speed train brake systems. Tribol. Lett. 2021, 69, 27. [Google Scholar] [CrossRef]
- González, R.; Viesca, J.L.; Hernández Battez, A.; Hadfield, M.; Fernández-González, A.; Bartolomé, M. Two phosphonium cation-based ionic liquids as lubricant additive to a polyalphaolefin base oil. J. Mol. Liq. 2019, 293, 111536. [Google Scholar] [CrossRef]
- Goindi, G.S.; Sarkar, P.; Jayal, A.D.; Chavan, S.N.; Mandal, D. Investigation of ionic liquids as additives to canola oil in minimum quantity lubrication milling of plain medium carbon steel. Int. J. Adv. Manuf. Technol. 2018, 94, 881–896. [Google Scholar] [CrossRef]
- Cai, M.; Yu, Q.; Zhou, F.; Liu, W. Physicochemistry aspects on frictional interfaces. Friction 2017, 5, 361–382. [Google Scholar] [CrossRef]
- Roy, S.; Speed, L., Jr.; Viola, M.; Luo, H.; Leonard, D.; Qu, J. Oil miscible phosphonium-phosphate ionic liquid as novel antiwear and antipitting additive for low-viscosity rear axle lubricants. Wear 2021, 466, 203588. [Google Scholar] [CrossRef]
- Yang, S.; Zhang, D.; Wong, J.; Cai, M. Interactions between ZDDP and an oil-soluble ionic liquid additive. Tribol. Int. 2021, 158, 106938. [Google Scholar] [CrossRef]
- Li, F.; Guo, B. Effect of different lubricants on microstructural and tribological properties of TC21 titanium alloy against Si3N4 under fretting–reciprocating sliding. J. Alloys Compd. 2018, 743, 576–585. [Google Scholar] [CrossRef]
- Huang, G.; Yu, Q.; Ma, Z.; Cai, M.; Zhou, F.; Liu, W. Oil-soluble ionic liquids as antiwear and extreme pressure additives in poly-α-olefin for steel/steel contacts. Friction 2019, 7, 18–31. [Google Scholar] [CrossRef]
- Yu, Q.; Zhang, C.; Dong, R.; Shi, Y.; Wang, Y.; Bai, Y.; Zhang, J.; Cai, M.; Zhou, F.; Liu, W. Physicochemical and tribological properties of gemini-type halogen-free dicationic ionic liquids. Friction 2021, 9, 344–355. [Google Scholar] [CrossRef]
- Fan, M.; Yang, D.; Wang, X.; Liu, W.; Fu, H. Doss–based QAILs: As both neat lubricants and lubricant additives with excellent tribological properties and good detergency. Ind. Eng. Chem. Res. 2014, 53, 17952–17960. [Google Scholar] [CrossRef]
- Yu, B.; Bansal, D.G.; Qu, J.; Sun, X.; Luo, H.; Dai, S.; Blau, P.J.; Bunting, B.G.; Mordukhovich, G.; Smolenski, D.J. Oil-miscible and non-corrosive phosphonium-based ionic liquids as candidate lubricant additives. Wear 2012, 289, 58–64. [Google Scholar] [CrossRef]
- Yu, Q.; Zhang, C.; Dong, R.; Shi, Y.; Wang, Y.; Bai, Y.; Zhang, J.; Cai, M.; Zhou, F.; Novel, N. P-containing oil-soluble ionic liquids with excellent tribological and anti-corrosion performance. Tribol. Int. 2019, 132, 118–129. [Google Scholar] [CrossRef]
- Yang, Z.; Liang, Y.; Huang, Q.; Wang, X.; Zhou, C.; Wang, R.; Yan, X.; Yu, B.; Yu, Q.; Cai, M.; et al. Tribological performance study of oil-soluble ILs as lubricant additives by the four-ball method. Lubr. Sci. 2022, 35, 183–192. [Google Scholar] [CrossRef]
- Li, F.; Yang, Z.; Guo, B.; Liang, Y.; Zhou, K.; Lv, H.; Feng, F.; Huang, Q.; Yu, Q.; Cai, M.; et al. Tribological performance of two oil-soluble ionic liquids compared with imported additives. Surf. Technol. 2022, 52, 1–23. [Google Scholar] [CrossRef]
- Günen, A.; Ergin, Ö. A Comparative Study on Characterization and High-Temperature Wear Behaviors of Thermochemical Coatings Applied to Cobalt-Based Haynes 25 Superalloys. Coatings 2023, 13, 1272. [Google Scholar] [CrossRef]
- Feng, K.; Shao, T. The evolution mechanism of tribo-oxide layer during high temperature dry sliding wear for nickel-based superalloy. Wear 2021, 476, 203747. [Google Scholar] [CrossRef]
- Chen, W.; Wang, K.; Gao, Y.; He, N.; Xin, H.; Li, H. Investigation of tribological properties of silicon nitride ceramic composites sliding against titanium alloy under artificial seawater lubricating condition. Int. J. Refract. Met. Hard Mater. 2018, 76, 204–213. [Google Scholar] [CrossRef]
- Wang, Z.; Chang, J.; Cai, C. Tribological performance of phosphonium ionic liquids as additives in lithium lubricating grease. Lubricants 2018, 6, 23. [Google Scholar] [CrossRef]
- Cui, S.; Zhu, H.; Tieu, A.K.; Deng, G.; Wan, S.; Zhu, Q.; Lin, B. Insights into the behavior of polyphosphate lubricant in hot rolling of mild steel. Wear 2019, 426, 433–442. [Google Scholar] [CrossRef]
- Li, X.; Deng, S.; Du, G.; Xie, X. Synergistic inhibition effect of walnut green husk extract and sodium lignosulfonate on the corrosion of cold rolled steel in phosphoric acid solution. J. Taiwan Inst. Chem. Eng. 2020, 114, 263–283. [Google Scholar] [CrossRef]
- Su, F.; Chen, G.; Huang, P. Lubricating performances of graphene oxide and onion-like carbon as water-based lubricant additives for smooth and sand-blasted steel discs. Friction 2020, 8, 47–57. [Google Scholar] [CrossRef]
- Fan, M.; Jin, Y.; Han, Y.; Ma, L.; Li, W.; Lu, Y.; Zhou, F.; Liu, W. The effect of chemical structure on the tribological performance of perfluorosulfonate ILs as lubricants for Ti-6Al-4V tribopairs. J. Mol. Liq. 2021, 321, 114286. [Google Scholar] [CrossRef]
- Li, S.; Chen, H.; Luo, T.; Wang, F.; Xiao, G.; Chen, Z.; Yi, M.; Sheng, C.; Xu, C. Tribological properties of 1-octyl-3-methylimidazolium lactate ionic liquid as a lubricant additive. J. Mol. Liq. 2021, 332, 115828. [Google Scholar] [CrossRef]
- Wu, J.; Luo, Y.; Chen, Y.; Lu, X.; Feng, X.; Bao, N.; Shi, Y. Poly (ionic liquid) s as lubricant additives with insight into adsorption-lubrication relationship. Tribol. Int. 2022, 165, 107278. [Google Scholar] [CrossRef]
IL | Kinematic Viscosity (mm2/s) | VI | |
---|---|---|---|
40 °C | 100 °C | ||
N88816P8 | 214.2 | 27.3 | 163 |
P88816P8 | 211.5 | 27.8 | 169 |
P88816DOSS | 349.9 | 38.8 | 161 |
ILs | TG Temperature (°C) Per Weight Loss | |||
---|---|---|---|---|
5% | 10% | 20% | 50% | |
N88816P8 | 181.06 | 209.53 | 262.07 | 317.49 |
P88816P8 | 275.99 | 314.61 | 337.93 | 384.20 |
P88816DOSS | 316.74 | 329.15 | 344.45 | 387.34 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, B.; Liu, M.; Li, Y.; Zheng, J.; Li, X.; Peng, C.; Jing, Z.; Li, F.; Yu, Q. The Tribological Properties of Low-Sulfur and Low-Phosphorus Halogen-Free Ionic Liquids as Lubricants for the Nickel-Based Alloy Inconel 690. Coatings 2023, 13, 1793. https://doi.org/10.3390/coatings13101793
Guo B, Liu M, Li Y, Zheng J, Li X, Peng C, Jing Z, Li F, Yu Q. The Tribological Properties of Low-Sulfur and Low-Phosphorus Halogen-Free Ionic Liquids as Lubricants for the Nickel-Based Alloy Inconel 690. Coatings. 2023; 13(10):1793. https://doi.org/10.3390/coatings13101793
Chicago/Turabian StyleGuo, Bian, Mengnan Liu, Yan Li, Jianming Zheng, Xubo Li, Chao Peng, Zhangshuai Jing, Feizhou Li, and Qiangliang Yu. 2023. "The Tribological Properties of Low-Sulfur and Low-Phosphorus Halogen-Free Ionic Liquids as Lubricants for the Nickel-Based Alloy Inconel 690" Coatings 13, no. 10: 1793. https://doi.org/10.3390/coatings13101793
APA StyleGuo, B., Liu, M., Li, Y., Zheng, J., Li, X., Peng, C., Jing, Z., Li, F., & Yu, Q. (2023). The Tribological Properties of Low-Sulfur and Low-Phosphorus Halogen-Free Ionic Liquids as Lubricants for the Nickel-Based Alloy Inconel 690. Coatings, 13(10), 1793. https://doi.org/10.3390/coatings13101793