Impact of Temperature on the Tensile Properties of Hypereutectic High-Entropy Alloys
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material Processing
2.2. Tensile Test
2.3. Microstructural Characterization
3. Results
3.1. Microstructure of the As-Cast Alloy
3.2. Microstructure of the Alloy after Tensile Tests
3.3. Mechanical Properties
4. Discussion
4.1. Synergistic Effect of L12 and BCC (B2) Phases
4.2. Dynamic Recrystallization
5. Conclusions
- The alloy consisted of L12 (lamellae and spherical) and BCC (B2) phases. Numerous nano-sized coherent B2 precipitates are uniformly dispersed in the BCC phases. A ductile fracture occurs in the L12 phase, while a brittle-like fracture occurs in the BCC (B2) phase for both the −100-alloy and RT-alloy.
- At low tensile temperatures (−100 °C and 23 ± 2 °C), the Orowan by-passing mechanism affects the dislocation slip, contributing to the excellent strength of the alloy. The −100-alloy exhibits the highest ultimate tensile strength of 1231 MPa and excellent elongation of 44%.
- At high tensile temperatures, the presence of smaller B2 precipitates and the recrystallization resulting from crystallization enhance the collaborative deformation ability of the L12 and BCC (B2) phase. However, the cracks observed near the spherical primary L12 phase significantly reduced the plastic deformation ability and strength.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Semenyuk, A.; Klimova, M.; Shaysultanov, D.; Salishchev, G.; Zherebtsov, S.; Stepanov, N. Effect of nitrogen on microstructure and mechanical properties of the CoCrFeMnNi high-entropy alloy after cold rolling and subsequent annealing. J. Alloys Compd. 2021, 888, 161452. [Google Scholar] [CrossRef]
- Wang, M.L.; Zhang, G.J.; Cui, H.Z.; Lu, Y.; Zhao, Y.; Wei, N.; Li, T. Effect of plasma remelting on microstructure and properties of a CoCrCuNiAl0.5 high-entropy alloy prepared by spark plasma sintering. J. Mater. Sci. 2021, 56, 5878–5898. [Google Scholar] [CrossRef]
- Qi, W.; Wang, W.R.; Yang, X.; Zhang, G.N.; Ye, W.; Su, Y.T.; Li, Y.; Chen, S.Y. Effects of Al and Ti co-doping on the strength-ductility-corrosion resistance of CoCrFeNi-AlTi high-entropy alloys. J. Alloys Compd. 2022, 925, 166751. [Google Scholar] [CrossRef]
- Wu, M.; Yang, C.; Kuijer, M.; Baker, I. Enhanced mechanical properties of carbon-doped FeNiMnAlCr high entropy alloy via hot-rolling. Mater. Charact. 2019, 158, 109983. [Google Scholar] [CrossRef]
- Lu, Y.P.; Gao, X.Z.; Jiang, L.; Chen, Z.; Wang, T.; Jie, J.; Kang, H.; Zhang, Y.; Guo, S.; Ruan, H.; et al. Directly cast bulk eutectic and near-eutectic high entropy alloys with balanced strength and ductility in a wide temperature range. Acta Mater. 2017, 124, 143–150. [Google Scholar] [CrossRef]
- Wang, M.L.; Lu, Y.P.; Zhang, G.J.; Cui, H.; Xu, D.; Wei, N.; Li, T. A novel high-entropy alloy composite coating with core-shell structures prepared by plasma cladding. Vacuum 2021, 184, 109905. [Google Scholar] [CrossRef]
- Sreeram, D.; Pugazhenthi, R.; Anbuchezhiyan, G.; Saravanan, R.; Veeranjaneyulu, K. An investigation of the effects of hot rolling on the microstructure and mechanical behavior of nano-sized SiC particulates reinforced Al6063 alloy composites. Mater. Today Proc. 2022, 64, 731–736. [Google Scholar] [CrossRef]
- Lan, L.; Wang, W.; Cui, Z.; Hao, X.; Qiu, D. Anisotropy study of the microstructure and properties of AlCoCrFeNi2.1 eutectic high entropy alloy additively manufactured by selective laser melting. J. Mater. Res. Technol. 2022, 129, 228–239. [Google Scholar] [CrossRef]
- Choudhuri, D.; Shukla, S.; Jannotti, P.A.; Muskeria, S.; Mukherjee, S.; Lloydc, J.T.; Mishra, R.S. Characterization of as-cast microstructural heterogeneities and damage mechanisms in eutectic AlCoCrFeNi2.1 high entropy alloy. Mater. Charact. 2019, 158, 109955. [Google Scholar] [CrossRef]
- Duan, X.T.; Han, T.Z.; Guan, X.; Wang, Y.N.; Su, H.H.; Ming, K.S.; Wang, J.; Zheng, S.J. Cooperative effect of Cr and Al elements on passivation enhancement of eutectic high-entropy alloy AlCoCrFeNi2.1 with precipitates. J. Mater. Res. Technol. 2023, 136, 97–108. [Google Scholar] [CrossRef]
- Peng, P.; Li, S.Y.; Chen, W.Q.; Xu, Y.L.; Zhang, Z.D.; Ma, Z.K.; Wang, J.T. Phase selection and mechanical properties of directionally solidified AlCoCrFeNi2.1 eutectic high-entropy alloy. J. Alloys Compd. 2022, 898, 162907. [Google Scholar] [CrossRef]
- Wang, J.R.; Jiang, F.; Wang, L.; Yang, G.J.; Xu, M.Q.; Yi, J.J. Cr addition-mediated simultaneous achievement of excellent strength and plasticity in non-equiatomic Nb-Ti-Zr-Ta-base refractory high-entropy alloys. J. Alloys Compd. 2023, 946, 169423. [Google Scholar] [CrossRef]
- Nguyen, V.T.; Qian, M.; Shi, Z.; Tran, X.Q.; Fabijanic, D.M.; Joseph, J.; Qu, D.D.; Matsumura, S.; Zhang, C.; Zhang, F.; et al. Cuboid-like nanostructure strengthened equiatomic Ti–Zr–Nb–Ta medium entropy alloy. Mater. Sci. Eng. A 2020, 798, 140169. [Google Scholar] [CrossRef]
- Iijima, Y.; Nagase, T.; Matsugaki, A.; Wang, P.; Ameyama, K.; Nakano, T. Design and development of Ti–Zr–Hf–Nb–Ta–Mo high-entropy alloys for metallic biomaterials. Mater. Des. 2021, 202, 109548. [Google Scholar] [CrossRef]
- Yang, W.; Pang, S.; Liu, Y.; Wang, Q.; Liaw, P.K.; Zhang, T. Design and properties of novel Ti–Zr–Hf–Nb–Ta high-entropy alloys for biomedical applications. Intermetallics 2022, 141, 107421. [Google Scholar] [CrossRef]
- Cao, Y.; Liu, Y.; Liu, B.; Zhang, W. Precipitation behavior during hot deformation of powder metallurgy Ti-Nb-Ta-Zr-Al high entropy alloys. Intermetallics 2018, 100, 95–103. [Google Scholar] [CrossRef]
- Eleti, R.R.; Stepanov, N.; Yurchenko, N.; Klimenko, D.; Zherebtsov, S. Plastic deformation of solid-solution strengthened Hf-Nb-Ta-Ti-Zr body-centered cubic medium/high-entropy alloys. Scr. Mater. 2021, 200, 113927. [Google Scholar] [CrossRef]
- Xiang, T.X.; Du, P.; Cai, Z.Y.; Li, K.; Bao, W.Z.; Yang, X.X.; Xie, G.Q. Phase-tunable equiatomic and non-equiatomic Ti-Zr-Nb-Ta high-entropy alloys with ultrahigh strength for metallic biomaterials. J. Mater. Sci. Technol. 2022, 117, 196–206. [Google Scholar] [CrossRef]
- Nagase, T.; Todai, M.; Hori, T.; Nakano, T. Microstructure of equiatomic and non-equiatomic Ti-Nb-Ta-Zr-Mo high-entropy alloys for metallic biomaterials. J. Alloys Compd. 2018, 753, 412–421. [Google Scholar] [CrossRef]
- Zhang, Y.L.; Wang, X.G.; Li, J.G.; Huang, Y.Q.; Lu, Y.P.; Sun, X.F. Deformation mechanism during high-temperature tensile test in an eutectic high-entropy alloy AlCoCrFeNi2.1. Mater. Sci. Eng. A 2018, 724, 148–155. [Google Scholar] [CrossRef]
- Peng, P.P.; Feng, X.N.; Li, S.Y.; Wei, B.L.; Zhang, M.Y.; Xu, Y.L.; Zhang, Z.D.; Ma, Z.K.; Wang, J.T. Effect of heat treatment on microstructure and mechanical properties of as-cast AlCoCrFeNi2.1 eutectic high entropy alloy. J. Alloys Compd. 2023, 939, 168843. [Google Scholar] [CrossRef]
- Lan, L.X.; Yang, Z.Y.; Wang, W.S.; Cui, Z.Q.; Hao, X.H. Effect of initial powder particle size on densification behavior and mechanical properties of laser additive manufacturing of AlCoCrFeNi2.1 eutectic high-entropy alloy. Powder Technol. 2023, 420, 118379. [Google Scholar] [CrossRef]
- Bhattacharjee, T.; Zheng, R.; Chong, Y.; Sheikh, S.; Guo, S.; Clark, I.T.; Okawa, T.; Wani, I.S.; Bhattacharjee, P.P.; Shibata, A.; et al. Effect of low temperature on tensile properties of AlCoCrFeNi2.1 eutectic high entropy alloy. Mater. Chem. Phys. 2018, 210, 207–212. [Google Scholar] [CrossRef]
- Zhang, X.B.; Li, B.; Zeng, L.; Yi, J.J.; Wang, B.Q.; Hu, C.H.; Xia, M.X. Effect of Re addition on the microstructure and mechanical properties of AlCoCrFeNi2.1 eutectic high-entropy alloy. Intermetallics 2023, 154, 107808. [Google Scholar] [CrossRef]
- Shim, S.H.; Pouraliakbar, H.; Minouei, H.; Rizi, M.S.; Fallah, V.; Na, Y.S.; Han, J.H.; Hong, S.I. Characterization of the microscale/nanoscale hierarchical microstructure of an as-cast CrMnFeNiCu high-entropy alloy with promising mechanical properties. J. Alloys Compd. 2023, 954, 170091. [Google Scholar] [CrossRef]
- Feng, J.J.; Gao, S.; Han, K.; Miao, Y.D.; Qi, J.Q.; Wei, F.X.; Ren, Y.J.; Zhan, Z.Z.; Sui, Y.W.; Sun, Z.; et al. Effects of minor B addition on microstructure and properties of Al19Co20Fe20Ni41 eutectic high-entropy alloy. Trans. Nonferrous Met. Soc. China 2021, 31, 1049–1058. [Google Scholar] [CrossRef]
- Zhang, M.N.; Wang, D.F.; He, L.J.; Ye, X.Y.; Zhang, W.W. Laser beam welding of AlCoCrFeNi2.1 eutectic high-entropy alloy. Mater. Lett. 2022, 308, 131137. [Google Scholar] [CrossRef]
- Wischi, M.; Campo, K.N.; Starck, L.F.; Da Fonseca, E.B.; Lopes, N.; Caram, R. Microstructure and mechanical behavior of the directionally solidified AlCoCrFeNi2.1 eutectic high-entropy alloy. J. Mater. Res. Technol. 2022, 20, 811–820. [Google Scholar] [CrossRef]
- Wang, S.; Li, Y.; Zhang, D.; Yang, Y.; Marwana, M.S.; Luo, Z. Microstructure and mechanical properties of high strength AlCoCrFeNi2.1 eutectic high entropy alloy prepared by selective laser melting (SLM). Mater. Lett. 2022, 310, 131511. [Google Scholar] [CrossRef]
- Gao, X.J.; Wang, L.; Guo, N.N.; Luo, L.S.; Zhu, G.M.; Shi, C.C.; Su, Y.Q.; Guo, J.J. Microstructure and mechanical properties of multi-phase reinforced Hf-Mo-Nb-Ti-Zr refractory high-entropy alloys. Int. J. Refract. Met. Hard Mater. 2022, 102, 105723. [Google Scholar] [CrossRef]
- Hou, J.X.; Tan, Y.; Liu, S.F.; Zhang, J.Y.; Xiao, W.C.; Kong, H.J.; Li, Q.; Cao, B.X.; Luan, J.H.; Zhao, Y.L.; et al. High-temperature oxidation behaviors and mechanisms in newly designed L12-strengthened high-entropy alloys. Corros. Sci. 2022, 208, 110665. [Google Scholar] [CrossRef]
- Kireeva, I.V.; Chumlyakov, Y.I.; Pobedennaya, Z.V.; Vyrodova, A.V. Effect of γ′-phase particles on the orientation and temperature dependence of the mechanical behaviour of Al0.3CoCrFeNi high-entropy alloy single crystals. Mater. Sci. Eng. A 2020, 772, 138772. [Google Scholar] [CrossRef]
- Huang, X.; Dong, Y.; Lu, S.M.; Li, C.Q.; Zhang, Z.G. Effects of Homogenized Treatment on Microstructure and Mechanical Properties of AlCoCrFeNi2.2 Near-Eutectic High-Entropy Alloy. Acta. Metall. Sin. 2021, 34, 1079–1086. [Google Scholar] [CrossRef]
- Hayun, S.; Lilova, K.; Salhov, S.; Navrotsky, A. Enthalpies of formation of high entropy and multicomponent alloys using oxide melt solution calorimetry. Intermetallics 2020, 125, 106897. [Google Scholar] [CrossRef]
- Li, C.; Zhao, M.; Li, J.C.; Jiang, Q. B2 structure of high-entropy alloys with addition of Al. J. Appl. Phys. 2008, 104, 113504. [Google Scholar] [CrossRef]
- Jin, X.; Bi, J.; Zhang, L.; Zhou, Y.; Du, X.Y.; Yuxin Liang, Y.X.; Li, B.S. A new CrFeNi2Al eutectic high entropy alloy system with excellent mechanical properties. J. Alloys Compd. 2019, 770, 655–661. [Google Scholar] [CrossRef]
- Wang, L.; Su, Y.N.; Yao, C.L.; Huang, Y.D.; Shen, J.; Zhang, Y.P.; Liu, G.; Zhao, P.K.; Zhang, G.J. Microstructure and mechanical property of novel NiAl-based hypoeutectic/eutectic/hypereutectic high-entropy alloy. Intermetallics 2022, 143, 107476. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, W.; Wu, S.; Yan, X.; Qiu, H.; Guo, S.; Zhu, B.; Zhang, H. Impact of Temperature on the Tensile Properties of Hypereutectic High-Entropy Alloys. Coatings 2023, 13, 1836. https://doi.org/10.3390/coatings13111836
Jiang W, Wu S, Yan X, Qiu H, Guo S, Zhu B, Zhang H. Impact of Temperature on the Tensile Properties of Hypereutectic High-Entropy Alloys. Coatings. 2023; 13(11):1836. https://doi.org/10.3390/coatings13111836
Chicago/Turabian StyleJiang, Wei, Shuaishuai Wu, Xuehui Yan, Haochen Qiu, Shengli Guo, Baohong Zhu, and Hanjun Zhang. 2023. "Impact of Temperature on the Tensile Properties of Hypereutectic High-Entropy Alloys" Coatings 13, no. 11: 1836. https://doi.org/10.3390/coatings13111836
APA StyleJiang, W., Wu, S., Yan, X., Qiu, H., Guo, S., Zhu, B., & Zhang, H. (2023). Impact of Temperature on the Tensile Properties of Hypereutectic High-Entropy Alloys. Coatings, 13(11), 1836. https://doi.org/10.3390/coatings13111836