Study on Friction and Corrosion Performance of CrTiBN Coating in Artificial Seawater Environment
Abstract
:1. Introduction
2. Experimental Details
2.1. Coating Deposition
2.2. Characterization
3. Results and Discussion
3.1. Morphology and Structure of the Coatings
3.2. The Corrosion Performance of the Coatings in Artificial Seawater
3.3. The Wear Performance of the Coatings in Artificial Seawater
3.4. Frictional Corrosion Behavior of Coatings in Artificial Seawater
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wood, R.J.K. Marine wear and tribocorrosion. Wear 2017, 376, 893–910. [Google Scholar] [CrossRef]
- Li, L.; Liu, L.L.; Li, X.; Guo, P.; Ke, P.; Wang, A. Enhanced tribocorrosion performance of Cr/GLC multilayered films for marine protective application. ACS Appl. Mater. Interfaces 2018, 10, 13187–13198. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Yu, H.; Sun, D. The tribocorrosion mechanism of aluminum alloy 7075-T6 in the deep ocean. Corros. Sci. 2021, 183, 109306. [Google Scholar] [CrossRef]
- Wu, D.; Guan, Z.; Cheng, Q.; Guo, W.; Tang, M.; Liu, Y. Development of a friction test apparatus for simulating the ultra-high pressure environment of the deep ocean. Wear 2020, 452, 203294. [Google Scholar] [CrossRef]
- Albrimi, Y.A.; Eddib, A.; Douch, J.; Berghoute, Y.; Hamdani, M.; Souto, R.M. Electrochemical behaviour of AISI 316 austenitic stainless steel in acidic media containing chloride ions. Int. J. Electrochem. Sci. 2011, 6, 4614–4627. [Google Scholar] [CrossRef]
- Ma, F.; Li, J.; Zeng, Z.; Gao, Y. Tribocorrosion behaviour of F690 and 316L steel in artificial seawater. Lubr. Sci. 2018, 30, 365–375. [Google Scholar] [CrossRef]
- Kumar, N.; Kumar, A.; Singh, A.K.; Das, G. Corrosion resistance of austenitic Cr-Ni stainless steel in 1 M HCl. Int. J. Mech. Eng. Robot. Res. 2014, 3, 21. [Google Scholar]
- Shan, L.; Wang, Y.; Zhang, Y.; Zhang, Q.; Xue, Q. Tribocorrosion behaviors of PVD CrN coated stainless steel in seawater. Wear 2016, 362, 97–104. [Google Scholar] [CrossRef]
- Vite, M.; Moreno-Ríos, M.; Hernández, E.G.; Laguna-Camacho, J. A study of the abrasive resistance of sputtered CrN coatings deposited on AISI 316 and AISI H13 steel substrates using steel particles. Wear 2011, 271, 1273–1279. [Google Scholar] [CrossRef]
- Zhang, G.A.; Yan, P.X.; Wang, P.; Chen, Y.M.; Zhang, J.Y. The structure and tribological behaviors of CrN and Cr–Ti–N coatings. Appl. Surf. Sci. 2007, 253, 7353–7359. [Google Scholar] [CrossRef]
- Kabir, M.S.; Munroe, P.; Zhou, Z.; Xie, Z. Scratch adhesion and tribological behaviour of graded Cr/CrN/CrTiN coatings synthesized by closed-field unbalanced magnetron sputtering. Wear 2017, 380, 163–175. [Google Scholar] [CrossRef]
- Ding, X.Z.; Zeng, X.T. Structural, mechanical and tribological properties of CrAlN coatings deposited by reactive unbalanced magnetron sputtering. Surf. Coat. Technol. 2005, 200, 1372–1376. [Google Scholar] [CrossRef]
- Barshilia, H.C.; Selvakumar, N.; Deepthi, B.; Rajam, K. A comparative study of reactive direct current magnetron sputtered CrAlN and CrN coatings. Surf. Coat. Technol. 2006, 201, 2193–2201. [Google Scholar] [CrossRef]
- Contreras, E.; Galindez, Y.; Rodas, M.A.; Bejarano, G.; Gómez, M.A. CrVN/TiN nanoscale multilayer coatings deposited by DC unbalanced magnetron sputtering. Surf. Coat. Technol. 2017, 332, 214–222. [Google Scholar] [CrossRef]
- Geng, Z.; Wang, H.; Wang, C.; Wang, L.; Zhang, G. Effect of Si content on the tribological properties of CrSiN films in air and water environments. Tribol. Int. 2014, 79, 140–150. [Google Scholar] [CrossRef]
- Ye, Y.; Wang, Y.; Wang, C.; Li, J.; Yao, Y. An analysis on tribological performance of CrCN coatings with different carbon contents in seawater. Tribol. Int. 2015, 91, 131–139. [Google Scholar] [CrossRef]
- Budna, K.P.; Neidhardt, J.; Mayrhofer, P.H.; Mitterer, C. Synthesis–structure–property relations for Cr–B–N coatings sputter deposited reactively from a Cr–B target with 20 at% B. Vacuum 2008, 82, 771–776. [Google Scholar] [CrossRef]
- Zhang, G.; Wang, L.; Yan, P.; Xue, Q. Structure and mechanical properties of Cr–B–N films deposited by reactive magnetron sputtering. J. Alloys Compd. 2009, 486, 227–232. [Google Scholar] [CrossRef]
- Ma, Q.; Zhou, F.; Gao, S.; Wu, Z.; Wang, Q.; Chen, K.; Zhou, Z.; Li, L.K.-Y. Influence of boron content on the microstructure and tribological properties of Cr-BN coatings in water lubrication. Appl. Surf. Sci. 2016, 377, 394–405. [Google Scholar] [CrossRef]
- Chang, Y.-Y.; Chung, C.-H.; Tsai, Z.-H.; Tsai, J.-M. Tribological and mechanical properties of AlCrBN hard coating deposited using cathodic arc evaporation. Surf. Coat. Technol. 2022, 432, 128097. [Google Scholar] [CrossRef]
- Kong, J.Z.; Hou, T.J.; Wang, Q.Z.; Yin, L.; Zhou, F.; Zhou, Z.F.; Li, L.K.Y. Influence of titanium or aluminum doping on the electrochemical properties of CrN coatings in artificial seawater. Surf. Coat. Technol. 2016, 307, 118–124. [Google Scholar] [CrossRef]
- Lu, C.Y.; Diyatmika, W.; Lou, B.S.; Lu, Y.C.; Duh, J.G.; Lee, J.W. Influences of target poisoning on the mechanical properties of TiCrBN thin films grown by a superimposed high power impulse and medium-frequency magnetron sputtering. Surf. Coat. Technol. 2017, 332, 86–95. [Google Scholar] [CrossRef]
- Ho, L.W.; Lee, J.W.; Chen, H.W.; Chan, Y.C.; Duh, J.G. Structure and mechanical property evaluation of Cr–Ti–B–N coatings. Thin Solid Film. 2013, 544, 380–385. [Google Scholar] [CrossRef]
- Lu, C.Y.; Diyatmika, W.; Lou, B.S.; Lee, J.W. Superimposition of high power impulse and middle frequency magnetron sputtering for fabrication of CrTiBN multicomponent hard coatings. Surf. Coat. Technol. 2018, 350, 962–970. [Google Scholar] [CrossRef]
- Wang, Q.; Zhou, F.; Zhou, Z.; Li, L.K.-Y.; Yan, J. An investigation on the crack resistance of CrN, CrBN and CrTiBN coatings via nanoindentation. Vacuum 2017, 145, 186–193. [Google Scholar] [CrossRef]
- Yu, L.; Luo, H.; Bian, J.; Ju, H.; Xu, J. Research on microstructure, mechanical and tribological properties of Cr-Ti-BN films. Coatings 2017, 7, 137. [Google Scholar] [CrossRef]
- Wang, Q.; Zhou, F.; Wang, X.; Chen, K.; Wang, M.; Qian, T.; Li, Y. Comparison of tribological properties of CrN, TiCN and TiAlN coatings sliding against SiC balls in water. Appl. Surf. Sci. 2011, 257, 7813–7820. [Google Scholar] [CrossRef]
- ASTM D1141-98; Standard Practice for the Preparation of Substitute Ocean Water. ASTM: West Conshohocken, PA, USA, 1998.
- ASTM G102-89e1; Standard Practice for Calculation of Corrosion Rates and Related Information from Electrochemical Measurements. ASTM: West Conshohocken, PA, USA, 2015.
- Goto, H.; Akao, N.; Hara, N.; Sugimoto, K. Pinhole Defect Density of CrNx Thin Films Formed by Ion-Beam-Enhanced Deposition on Stainless Steel Substrates. J. Electrochem. Soc. 2007, 154, C189. [Google Scholar] [CrossRef]
- Zhou, S.Y.; Yan, S.J.; Han, B.; Yang, B.; Lin, B.Z.; Zhang, Z.D.; Ai, Z.W.; Pelenovich, V.O.; Fu, D.J. Influence of modulation period and modulation ratio on structure and mechanical properties of TiBN/CrN coatings deposited by multi-arc ion plating. Appl. Surf. Sci. 2015, 351, 1116–1121. [Google Scholar] [CrossRef]
- Feng, N.; Wang, Q.; Zheng, A.; Zhang, Z.; Fan, J.; Liu, S.B.; Amoureux, J.-P.; Deng, F. Understanding the high photocatalytic activity of (B, Ag)-codoped TiO2 under solar-light irradiation with XPS, solid-state NMR, and DFT calculations. J. Am. Chem. Soc. 2013, 135, 1607–1616. [Google Scholar] [CrossRef]
- Wu, Y.; Liu, X.; Yang, Z.; Gu, L.; Yu, Y. Nitrogen-Doped Ordered Mesoporous Anatase TiO2 Nanofibers as Anode Materials for High Performance Sodium-Ion Batteries. Small 2016, 12, 3522–3529. [Google Scholar] [CrossRef] [PubMed]
- Aissani, L.; Fellah, M.; Nouveau, C.; Abdul Samad, M.; Montagne, A.; Iost, A. Structural and mechanical properties of Cr–Zr–N coatings with different Zr content. Surf. Eng. 2020, 36, 69–77. [Google Scholar] [CrossRef]
- Ahmad, P.; Khandaker, M.U.; Amin, Y.M. Synthesis of boron nitride nanotubes by Argon supported Thermal Chemical Vapor Deposition. Phys. E Low-Dimens. Syst. Nanostruct. 2015, 67, 33–37. [Google Scholar] [CrossRef]
- Ze, S.; Dejun, K.; Wei, L. Surface-interface microstructures and binding strength of cathodic arc ion plated TiCN coatings on YT14 cutting tools. Surf. Interface Anal. 2017, 49, 488–494. [Google Scholar] [CrossRef]
- Tian, C.X.; Wang, Z.S.; Zou, C.W.; Tang, X.S.; Xie, X.; Li, S.Q.; Laing, F.; Li, Z.F.; Liu, Y.F.; Su, F.H. Ternary and quarternary TiBN and TiBCN nanocomposite coatings deposited by arc ion plating. Surf. Coat. Technol. 2019, 359, 445–450. [Google Scholar] [CrossRef]
- Lide, D.R. (Ed.) CRC Handbook of Chemistry and Physics; CRC Press: Boca Raton, FL, USA, 2004. [Google Scholar]
- Liu, C.; Bi, Q.; Matthews, A.E.I.S. EIS comparison on corrosion performance of PVD TiN and CrN coated mild steel in 0.5 N NaCl aqueous solution. Corros. Sci. 2001, 43, 1953–1961. [Google Scholar] [CrossRef]
- Fu, Y.; Zhou, F.; Wang, Q.; Zhang, M.; Zhou, Z. Electrochemical and tribocorrosion performances of CrMoSiCN coating on Ti-6Al-4V titanium alloy in artificial seawater. Corros. Sci. 2020, 165, 108385. [Google Scholar] [CrossRef]
- Chang, C.H.; Huang, T.C.; Peng, C.W.; Yeh, T.C.; Lu, H.I.; Hung, W.I.; Wang, C.J.; Yang, T.I.; Yeh, J.M. Novel anticorrosion coatings prepared from polyaniline/graphene composites. Carbon 2012, 50, 5044–5051. [Google Scholar] [CrossRef]
- Lin, C.H.; Duh, J.G. Electrochemical impedance spectroscopy (EIS) study on corrosion performance of CrAlSiN coated steels in 3.5 wt% NaCl solution. Surf. Coat. Technol. 2009, 204, 784–787. [Google Scholar] [CrossRef]
- Jehn, H.A. Improvement of the corrosion resistance of PVD hard coating–substrate systems. Surf. Coat. Technol. 2000, 125, 212–217. [Google Scholar] [CrossRef]
- Yan, Z.; Jiang, D.; Gao, X.; Hu, M.; Wang, D.; Fu, Y.; Sun, J.; Feng, D.; Weng, L. Friction and wear behavior of TiN films against ceramic and steel balls. Tribol. Int. 2018, 12, 61–69. [Google Scholar] [CrossRef]
- Zhou, F.; Adachi, K.; Kato, K. Friction and wear behavior of BCN coatings sliding against ceramic and steel balls in various environments. Wear 2006, 261, 301–310. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, G.; Wood, R.J.K.; Wang, S.C.; Xue, Q. Fabrication of CrAlN nanocomposite films with high hardness and excellent anti-wear performance for gear application. Surf. Coat. Technol. 2010, 204, 3517–3524. [Google Scholar] [CrossRef]
- Bayón, R.; Igartua, A.; González, J.J.; De Gopegui, U.R. Influence of the carbon content on the corrosion and tribocorrosion performance of Ti-DLC coatings for biomedical alloys. Tribol. Int. 2015, 88, 115–125. [Google Scholar] [CrossRef]
Coatings | Temperature/°C | Current/A | Pressure/Pa | Current/A | Pressure/Pa | Time/min |
---|---|---|---|---|---|---|
CrN | 350 | 80 | 2.0 | 80 | 1.0 | 90 |
CrTiN | 350 | 80 | 2.0 | 80 | 1.0 | 90 |
CrTiBN | 350 | 80 | 2.0 | 70 | 0.7 | 90 |
Component | NaCl | KCl | Na2SO4 | NaHCO3 | MgCl2 | KBr | CaCl2 | H3BO3 | SrCl2 | NaF |
---|---|---|---|---|---|---|---|---|---|---|
Concentration (g/L) | 24.530 | 0.695 | 4.090 | 0.201 | 5.200 | 0.101 | 1.160 | 0.027 | 0.025 | 0.003 |
Coatings | Hardness (HV) | Average Crystal Size (nm) |
---|---|---|
CrN | 1965 | 6.48 |
CrTiN | 2456 | 5.64 |
CrTiBN | 2374 | 5.32 |
Coatings | Rs (Ω·cm2) | CPEpo (F·cm2) | Rpo (Ω·cm2) | CPEd1 (F·cm2) | Rct (Ω·cm2) |
---|---|---|---|---|---|
CrN | 13.53 | 8.53 × 10−6 | 3.49 × 105 | 2.01 × 10−5 | 9.36 × 105 |
CrTiN | 13.51 | 1.58 × 10−5 | 3.35 × 105 | 1.95 × 10−5 | 8.56 × 105 |
CrTiBN | 9.95 | 1.55 × 10−5 | 1.26 × 105 | 1.91 × 10−5 | 1.18 × 106 |
Coatings | Ecorr (V) | βa (V) | βc (V) | icorr (A/cm2) | Rp (kΩ·cm2) |
---|---|---|---|---|---|
CrN | −0.22 | 4.11 | 8.14 | 2.87 × 10−8 | 1230 |
CrTiN | −0.14 | 1.78 | 0.15 | 3.06 × 10−8 | 2020 |
CrTiBN | −0.11 | 0.48 | 0.14 | 1.94 × 10−8 | 2470 |
316 | −0.40 | 2.55 | 4.11 | 9.52 × 10−7 | 69 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, M.; Yu, Y.; Zou, C.; Tian, C.; Xiang, Y. Study on Friction and Corrosion Performance of CrTiBN Coating in Artificial Seawater Environment. Coatings 2023, 13, 1837. https://doi.org/10.3390/coatings13111837
Li M, Yu Y, Zou C, Tian C, Xiang Y. Study on Friction and Corrosion Performance of CrTiBN Coating in Artificial Seawater Environment. Coatings. 2023; 13(11):1837. https://doi.org/10.3390/coatings13111837
Chicago/Turabian StyleLi, Man, Yunjiang Yu, Changwei Zou, Canxin Tian, and Yanxiong Xiang. 2023. "Study on Friction and Corrosion Performance of CrTiBN Coating in Artificial Seawater Environment" Coatings 13, no. 11: 1837. https://doi.org/10.3390/coatings13111837
APA StyleLi, M., Yu, Y., Zou, C., Tian, C., & Xiang, Y. (2023). Study on Friction and Corrosion Performance of CrTiBN Coating in Artificial Seawater Environment. Coatings, 13(11), 1837. https://doi.org/10.3390/coatings13111837