Simulation and Experimental Investigation of Multi-Step Shot Peening for Surface Crack Repair in Aluminum Alloys
Abstract
:1. Introduction
2. Experimental Materials
3. Finite Element Simulation and Verification
3.1. Shot Peening Finite Element Simulation
3.2. Fatigue Test Finite Element Simulation
4. Multi-Step Simulation of Crack Repair by Shot Peening and Fatigue Testing
5. Results and Discussion
5.1. Effect of Shot Peening Pressure on Crack Repair
5.2. Effect of Projectile Size on Crack Repair
5.3. Effect of Tensile Load on Crack Repair
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
V | The speed of the projectiles during shot peening. |
Projectile diameter. | |
The shot peening pressure. | |
The Poisson’s ratio of a material. | |
The density of the material. | |
E | The elastic modulus of the material. |
The yield strength of the material. | |
G | The shear modulus of the material. |
σ | The flow stress. |
A | The flow stress at the yield point of the material under the reference condition. |
B | The constants that illustrate the characteristics of the material. |
ε | The corresponding plastic strain. |
n | Strain hardening exponent. |
C | Strain rate sensitivity coefficient. |
Strain rate factor. | |
T | Temperature factor. |
The room temperature. | |
The melting point of material. | |
h | Temperature sensitivity coefficient. |
m | The shot peening flow rate. |
d | The crack depth. |
w | The crack width. |
S-N | The relationship between stress and the number of cycles. |
R | The stress ratio. |
The material fatigue strength factor. | |
The radial stress components at the crack tip. | |
The tangential stress components at the crack tip. | |
The stress intensity factor at the crack tip. | |
The radial distance from the crack tip. | |
The polar angle at the crack tip. | |
LEFM | Linear Elastic Fracture Mechanics. |
The energy release rate. | |
The crack repair ratio. | |
The fatigue life of the cracked specimen. | |
The fatigue life of the intact specimen. |
References
- Xu, T.; Li, G.; Xie, M.; Liu, M.; Zhang, D.; Zhao, Y.; Chen, G.; Kai, X. Microstructure and mechanical properties of in-situ nano γ-Al2O3p/A356 aluminum matrix composite. J. Alloys Compd. 2019, 787, 72–85. [Google Scholar] [CrossRef]
- Song, X.Y.; Wang, Y.J.; Zhang, J.X.; Du, D.A.; Yang, H.Y.; Zhao, L.; Peng, F.; Li, X.; Qiu, F. Microstructure and mechanical properties of aluminum alloy composites with endogenous nano-TiCp. Ceram. Int. 2023, 49, 6923–6931. [Google Scholar] [CrossRef]
- Ganiev, I.N.; Rakhimova, N.O.; Kurbonova, M.Z.; Davlatzoda, F.S.; Yakubov, U.S. Effect of Titanium Additions on the Corrosion and Electrochemical Properties of Aluminum Alloy AB1. Inorg. Mater. 2022, 58, 893–897. [Google Scholar] [CrossRef]
- Valdez, B.; Kiyota, S.; Stoytcheva, M.; Zlatev, R.; Bastidas, J.M. Cerium-based conversion coatings to improve the corrosion resistance of aluminum alloy 6061-T6. Corros. Sci. 2014, 87, 141–149. [Google Scholar] [CrossRef]
- Wang, Y.L.; Zhu, Y.L.; Hou, S.; Sun, H.X.; Zhou, Y. Investigation on fatigue performance of cold expansion holes of 6061-T6 aluminum alloy. Int. J. Fatigue 2017, 95, 216–228. [Google Scholar] [CrossRef]
- Chang, J.; Wang, Z.; Zhu, Q.; Wang, Z. SVR Prediction Algorithm for Crack Propagation of Aviation Aluminum Alloy. J. Math. 2020, 2020, 1034639. [Google Scholar] [CrossRef]
- Hu, Y.; Cheng, H.; Yu, J.; Yao, Z. An experimental study on crack closure induced by laser peening in pre-cracked aluminum alloy 2024-T351 and fatigue life extension. Int. J. Fatigue 2019, 130, 105232. [Google Scholar] [CrossRef]
- Trško, L.; Guagliano, M.; Bokůvka, O.; Nový, F.; Jambor, M.; Florková, Z. Influence of severe shot peening on the surface state and ultrahigh-cycle fatigue behavior of an AW 7075 aluminum alloy. J. Mater. Eng. Perform. 2017, 26, 2784–2797. [Google Scholar] [CrossRef]
- Maleki, E.; Unal, O.; Kashyzadeh, K.R. Effects of conventional, severe, over, and re-shot peening processes on the fatigue behavior of mild carbon steel. Surf. Coat. Technol. 2018, 344, 62–74. [Google Scholar] [CrossRef]
- Wang, C.; Lai, Y.; Wang, L.; Wang, C. Dislocation-based study on the influences of shot peening on fatigue resistance. Surf. Coat. Technol. 2020, 383, 125247. [Google Scholar] [CrossRef]
- Keller, S.; Horstmann, M.; Kashaev, N.; Klusemann, B. Experimentally validated multi-step simulation strategy to predict the fatigue crack propagation rate in residual stress fields after laser shock peening. Int. J. Fatigue 2019, 124, 265–276. [Google Scholar] [CrossRef]
- Keller, S.; Horstmann, M.; Kashaev, N.; Klusemann, B. Crack closure mechanisms in residual stress fields generated by laser shock peening: A combined experimental-numerical approach. Eng. Fract. Mech. 2019, 221, 106630. [Google Scholar] [CrossRef]
- Lv, Z.; Hou, R.; Wang, R.; Zhang, Y.; Zhang, M. Numerical investigation on the residual stress in abrasive waterjet peening. Int. J. Adv. Manuf. Technol. 2022, 123, 1695–1706. [Google Scholar] [CrossRef]
- Ohta, T.; Ma, N. Shot velocity measurement using particle image velocimetry and a numerical analysis of the residual stress in fine particle shot peening. J. Manuf. Process. 2020, 58, 1138–1149. [Google Scholar] [CrossRef]
- Zhang, X.; Huang, J.; Niu, Z.; Zhong, Y.; Zhou, W.; Chen, G.; Fu, X. Analysis of shot peening residual stress distribution based on dislocation configuration. Mater. Sci. Technol. 2022, 38, 1257–1265. [Google Scholar] [CrossRef]
- Zhang, H.W.; Zhang, Y.D.; Qiong, W.U. Three-dimensional numerical analysis of residual stress field for shot-peening. J. Aerosp. Power 2010, 25, 603–609. [Google Scholar]
- Zhang, H.W.; Zhang, Y.D.; Zhao, X.C. Numerical analysis of residual stress field for shot-peening process based on Kriging model. J. Syst. Simul. 2011, 23, 826–831. [Google Scholar]
- Zhang, H.-W.; Chen, J.-Q.; Zhang, Y.-D. Numerical simulation of shot-peening process based on multiple shot model. J. Plast. Eng. 2012, 19, 118–125. [Google Scholar]
- Chen, J.-W.; Liao, K.; Che, X.-F.; Zhong, L.-P.; Xi, H. Simulation and experiment study of surface stress-deformation by shot peening on Al-based alloy. Surf. Technol. 2018, 47, 41–47. [Google Scholar]
- Chen, J.-W.; Liao, K.; Li, L.-J.; Gao, Z.-C.; Chen, H.; Xi, H. Function relationship between shot peening parameters and surface characteristic of Al-based alloy and application. Surf. Technol. 2019, 48, 212–220. [Google Scholar]
- Jiali, B.U.; Yang, L.Ü.; Bozhi, L.I.U.; Zhenyu, H.A.N.; Wenwei, T.O.N.G.; Zhikun, G.A.O. Effect of different shot peening strength on fatigue resistance of TC17 titanium alloy. J. Aerosp. Power 2022, 37, 1225–1233. [Google Scholar]
- Tuninetti, V.; Jaramillo, A.F.; Riu, G.; Rojas-Ulloa, C.; Znaidi, A.; Medina, C.; Mateo, A.M.; Roa, J.J. Experimental Correlation of Mechanical Properties of the Ti-6Al-4V Alloy at Different Length Scales. Metals 2021, 11, 104. [Google Scholar] [CrossRef]
- Rojas-Ulloa, C.; Bouffioux, C.; Jaramillo, A.F.; García-Herrera, C.M.; Hussain, T.; Duchêne, L.; Riu, G.; Josep Roa, J.; Flores, P.; Marie Habraken, A.; et al. Nanomechanical Characterization of the Deformation Response of Orthotropic Ti–6Al–4V. Adv. Eng. Mater. 2021, 23, 2001341. [Google Scholar] [CrossRef]
- Węglewski, W.; Pitchai, P.; Bochenek, K.; Bolzon, G.; Konetschnik, R.; Sartory, B.; Ebner, R.; Kiener, D.; Basista, M. Experimental and Numerical Investigation of the Deformation and Fracture Mode of Microcantilever Beams Made of Cr(Re)/Al2O3 Metal–Matrix Composite. Metall. Mater. Trans. A 2020, 51, 2377–2390. [Google Scholar] [CrossRef]
- Wu, G.; Wang, Z.; Gan, J.; Yang, Y.; Meng, Q.; Wei, S.; Huang, H. FE analysis of shot-peening-induced residual stresses of AISI 304 stainless steel by considering mesh density and friction coefficient. Surf. Eng. 2019, 35, 242–254. [Google Scholar] [CrossRef]
- Rodriguez-Sanchez, J.E.; Rodriguez-Castellanos, A.; Perez-Guerrero, F. Shot Peening Effect on Fatigue Crack Repaired Weldments. Adv. Mater. Sci. Eng. 2017, 2017, 3720403. [Google Scholar] [CrossRef]
- Lucon, E. An assessment of different approaches for measuring crack sizes in fatigue and fracture mechanics specimens. Theor. Appl. Fract. Mech. 2021, 116, 103119. [Google Scholar] [CrossRef]
- Arakawa, J.; Hayashi, Y.; Akebono, H.; Sugeta, A. Effectiveness of Ultrasonic Shot Peening on Stainless Cast Steel SCS6 Containing a Fatigue Crack. J. Soc. Mater. Sci. Jpn. 2019, 68, 897–903. [Google Scholar] [CrossRef]
- Rasaee, S.; Mirzaei, A.H.; Almasi, D. Constitutive modelling of Al7075 using the Johnson–Cook model. Bull. Mater. Sci. 2020, 43, 23. [Google Scholar] [CrossRef]
Si | Mn | Mg | Fe | Cr | Zn | Cu | Al |
---|---|---|---|---|---|---|---|
0.11 | 0.18 | 2.68 | 0.28 | 0.18 | 5.54 | 1.42 | Bal. |
E/GPa | G/GPa | ||||
---|---|---|---|---|---|
Projectile | 0.31 | 7.85 | 206 | — | — |
Target | 0.33 | 2.81 | 71 | 510 | 26.8 |
A/MPa | /MPa | n | /K | /K | ||
---|---|---|---|---|---|---|
198 | −268.786 | 0.261 | 2.431 | 0.49 | 750.15 | 300 |
Shot Peening Pressure/MPa | Projectile Diameter/mm | Fatigue Test Stress/MPa |
---|---|---|
0.3, 0.4, 0.5, 0.6 | 0.3, 0.4, 0.5, 0.6 | 150, 180, 210, 240 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, J.; Liao, K.; Hu, J. Simulation and Experimental Investigation of Multi-Step Shot Peening for Surface Crack Repair in Aluminum Alloys. Coatings 2023, 13, 1969. https://doi.org/10.3390/coatings13111969
Zhu J, Liao K, Hu J. Simulation and Experimental Investigation of Multi-Step Shot Peening for Surface Crack Repair in Aluminum Alloys. Coatings. 2023; 13(11):1969. https://doi.org/10.3390/coatings13111969
Chicago/Turabian StyleZhu, Jiahao, Kai Liao, and Jun Hu. 2023. "Simulation and Experimental Investigation of Multi-Step Shot Peening for Surface Crack Repair in Aluminum Alloys" Coatings 13, no. 11: 1969. https://doi.org/10.3390/coatings13111969
APA StyleZhu, J., Liao, K., & Hu, J. (2023). Simulation and Experimental Investigation of Multi-Step Shot Peening for Surface Crack Repair in Aluminum Alloys. Coatings, 13(11), 1969. https://doi.org/10.3390/coatings13111969