Preparation of g-C3N4/Bismuth Iodide/Tourmaline Composites and Their Photodegradation Performance of Amaranthine
Abstract
:1. Introduction
2. Experiment
2.1. Experimental Reagents
2.2. Synthesis of g-C3N4/BiOI/Tourmaline
2.3. Photocatalytic Activity Test
2.4. Sample Characterization
3. Results and Discussion
3.1. Sample Characterization and Analysis
3.2. Photocatalytic Performance Testing
3.3. Optimization of g-C3N4/BiOI/Tourmaline Composite Catalyst for the Degradation of AR Wastewater
3.3.1. Effect of Dosing Amount on the Degradation Rate of AR
3.3.2. Effect of Initial pH on the Degradation Efficiency of AR
3.3.3. Effect of Initial Concentration on the Degradation Efficiency of AR
3.4. Reusable Performance of g-C3N4/BiOI/Tourmaline Photocatalysts
3.5. Free Radical Masking Experiment
4. Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Aramesh, N.; Bagheri, A.R.; Bilal, M. Chitosan-based hybrid materials for adsorptive removal of dyes and underlying interaction mechanisms. Int. J. Biol. Macromol. 2021, 183, 399–422. [Google Scholar] [CrossRef]
- Januário, E.F.D.; Vidovix, T.B.; Beluci, N.D.C.L.; Paixão, R.M.; da Silva, L.H.B.R.; Homem, N.C.; Bergamasco, R.; Vieira, A.M.S. Advanced graphene oxide-based membranes as a potential alternative for dyes removal: A review. Sci. Total Environ. 2021, 789, 147957. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, S.; Debnath, A.; Allam, B.K.; Musa, N. Adsorptive and photocatalytic performance of perovskite material for the removal of food dye in an aqueous solution. Environ. Chall 2021, 5, 100240. [Google Scholar] [CrossRef]
- Gonçalves, J.; da Silva, K.; Rios, E.; Crispim, M.; Dotto, G. Chitosan hydrogel scaffold modified with carbon nanotubes and its application for food dyes removal in single and binary aqueous systems. Biol. Macromol. 2020, 142, 85–93. [Google Scholar] [CrossRef] [PubMed]
- Jindal, H.; Kumar, D.; Sillanpaa, M. Current progress in polymeric graphitic carbon nitride-based photocatalysts for dye degradation. Inorg. Chem. Commun. 2021, 131, 108786. [Google Scholar] [CrossRef]
- Ye, L.; Su, Y.; Jin, X.; Xie, H.; Zhang, C. Recent advances in BiOX (X = Cl, Br and I) photocatalysts: Synthesis, modification, facet effects and mechanisms. Environ. Sci. Nano 2014, 1, 90. [Google Scholar] [CrossRef]
- Sun, H.J.; Liu, X.G.; Chen, Z.H.; Chen, L.X.; Deng, Y.R.; Mei, Y.Y. Study on photocatalytic degradation of methyl orange by BiOI/g-C3N4. Inorg. Salt Ind. 2021, 53, 90–94. [Google Scholar]
- Yuan, J. Preparation of Tourmaline Based Composites and Their Application to Dye and Ammonia Nitrogen Wastewater. Master’s Thesis, Tianjin University of Technology, Tianjing, China, 2021. [Google Scholar]
- He, D.; Zhang, L.; Shu, X.; Liu, S. Preparation of nano-ZnO/tourmaline composite powder and its photocatalytic performance on methylene blue. New Chem. Mater. 2018, 46, 93–96. [Google Scholar]
- Huang, J.H.; Lin, W.T.; Xie, L.Y.; Chen, J.Q. Construction of graphite-phase carbon-carbon nitride-bismuth iodide layered heterojunction and its photocatalytic bactericidal performance. Environ. Sci. 2017, 38, 3979–3986. [Google Scholar]
- Tian, N.; Huang, H.; Wang, S.; Zhang, T.; Du, X.; Zhang, Y. Facet-charge-induced coupling dependent interfacial photocharge separation: A case of BiOI/g-C3N4 p-n junction. Appl. Catal. B Environ. 2020, 267, 118697. [Google Scholar] [CrossRef]
- Shi, L.; Liang, L.; Ma, J.; Meng, Y.; Zhong, S.; Wang, F.; Sun, J. Highly efficient visible light-driven Ag/AgBr/ZnO composite photocatalyst for degrading Rhodamine B. Ceram. Int. 2014, 40, 3495–3502. [Google Scholar] [CrossRef]
- Nie, W.; Chen, T.; Chen, Z.; Wu, S.; Cao, N. Study of high porosity tourmaline ceramics for the treatment of coking wastewater. Coal Chem. Ind. 2016, 44, 44–46. [Google Scholar]
- Liu, H.; Zhou, H.; Liu, X.; Li, H.; Ren, C.; Li, X.; Li, W.; Lian, Z.; Zhang, M. Engineering design of hierarchical g-C3N4@Bi/BiOBr ternary heterojunction with Z-scheme system for efficient visible-light photocatalytic performance. J. Alloys Compd. 2019, 798, 741–749. [Google Scholar] [CrossRef]
- Fan, Y. Effect of terbium to tourmaline ratio on the morphology and optical properties of Tb/tourmaline/TiO2 nanotubes. Contemp. Chem. Ind. 2017, 46, 1560–1563+1567. [Google Scholar]
- Wei, L.; Wang, X.; Liu, S.; Guo, W. Preparation of tourmaline sphere-loaded nanotitanium dioxide photocatalysts and their degradation of phthalate esters in water. Sichuan Environ. 2018, 37, 35–38. [Google Scholar]
- Qi, S.; Wang, D.; Zhao, Y.; Xu, H. Photocatalytic mechanism of tourmaline/ZnO composites. Mater. Eng. 2019, 47, 145–151. [Google Scholar]
- Jiang, R.; Zhu, H.Y.; Li, J.B.; Fu, F.Q.; Yao, J.; Jiang, S.T.; Zeng, G.M. Fabrication of novel magnetically separable BiOBr/CoFe2O4 microspheres and its application in the efficient removal of dye from aqueous phase by an environment-friendly and economical approach. Appl. Surf. Sci. 2016, 364, 604–612. [Google Scholar] [CrossRef]
- Hu, L.; Chen, F.; Hu, P.; Zou, L.; Hu, X. Hydrothermal Synthesis of SnO2/ZnS Nanocomposite as a Photocatalyst for Degradation of Rhodamine B under Simulated and Natural Sunlight. J. Mol. Catal. A Chem. 2016, 411, 203–213. [Google Scholar] [CrossRef]
- Rajamanickam, D.; Dhatshanamurthi, P.; Shanthi, M. Enhanced photocatalytic efficiency of NiS/TiO2 composite catalysts using sunset yellow, an azo dye under day light illumination. Mater. Res. Bull. 2015, 61, 439–447. [Google Scholar] [CrossRef]
- Foroughirad, S.; Haddadi-Asl, V.; Khosravi, A.; Salami-Kalajahi, M. Synthesis of magnetic nanoparticles-decorated halloysite nanotubes/poly([2-(acryloyloxy) ethyl] trimethylammonium chloride) hybrid nanoparticles for removal of Sunset Yellow from water. J. Polym. Res. 2020, 27, 320. [Google Scholar]
- Gupta, V.K.; Jain, R.; Mittal, A.; Saleh, T.A.; Nayak, A.; Agarwal, S.; Sikarwar, S. Photo-catalytic degradation of toxic dye amaranth on TiO2/UV in aqueous suspensions. Mater. Sci. Eng. C 2012, 32, 12–17. [Google Scholar] [CrossRef] [PubMed]
- Naik, A.P.; Salkar, A.V.; Majik, M.S.; Morajkar, P.P. Enhanced photocatalytic degradation of Amaranth dye on mesoporous anatase TiO2: Evidence of C–N, N=N bond cleavage and identification of new intermediates. Photochem. Photobiol. Sci. 2017, 16, 1126–1138. [Google Scholar] [CrossRef] [PubMed]
- Kumar, J.; Bansal, A. Photodegradation of amaranth in aqueous solution catalyzed by immobilized nanoparticles of titanium dioxide. Int. J. Environ. Sci. Technol. 2012, 9, 479–484. [Google Scholar] [CrossRef]
- Devi, L.G.; Rajashekhar, K.E.; Raju, K.A.; Kumar, S.G. Influence of various aromatic derivatives on the advanced photo Fenton degradation of Amaranth dye. Desalination 2011, 270, 31–39. [Google Scholar] [CrossRef]
- Aditya, M.; Chellapandi, T.; Prasad, G.K.; Venkatesh, M.J.P.; Khan, M.R.; Madhumitha, G.; Roopan, S.M. Biosynthesis of rod shaped Gd2O3 on g-C3N4 as nanocomposite for visible light mediated photocatalytic degradation of pollutants and RSM optimization. Diam. Relat. Mater. 2022, 121, 108790. [Google Scholar] [CrossRef]
- Luo, J.; Zhou, X.; Ma, L.; Xu, X. Enhanced Visible-Light-Driven Photocatalytic Activity of WO3/BiOI Heterojunction Photocatalysts. J. Mol. Catal. A Chem. 2015, 410, 168–176. [Google Scholar] [CrossRef]
- He, R.; Cheng, K.; Wei, Z.; Zhang, S.; Xu, D. Room-temperature in situ fabrication and enhanced photocatalytic activity of direct Z-scheme BiOI/g-C3N4 photocatalyst. Appl. Surf. Sci. 2018, 465, 964–972. [Google Scholar] [CrossRef]
- Zhu, A.; Chen, F.; Liu, S.; Bu, X. Study on the adsorption performance of ultra-fine tourmaline powder on methylene blue in water. J. Wuhan Light Ind. Univ. 2017, 36, 48–52+56. [Google Scholar]
- Yu, L.; Wang, C.; Chen, F.; Zhang, J.; Ruan, Y.; Xu, J. Investigating the synergistic effects in tourmaline/TiO2-based heterogeneous photocatalysis: Underlying mechanism insights. J. Mol. Catal. A Chem. 2016, 411, 1–8. [Google Scholar] [CrossRef]
- Wan, S.; Ou, M.; Zhong, Q.; Zhang, S. Z-scheme CaIn2S4/Ag3PO4 nanocomposite with superior photocatalytic NO removal performance: Fabrication, characterization and mechanistic study. New J. Chem. 2018, 42, 318–326. [Google Scholar] [CrossRef]
Samples | k (min−1) | R2 |
---|---|---|
g-C3N4 | 0.0038 | 0.990 |
BiOI | 0.0060 | 0.997 |
Tourmaline | 0.0005 | 0.926 |
g-C3N4/BiOI | 0.0078 | 0.992 |
g-C3N4/Tourmaline | 0.0051 | 0.964 |
BiOI/Tourmaline | 0.0069 | 0.996 |
g-C3N4/BiOI/Tourmaline | 0.0122 | 0.993 |
Dosing Amount (g·L−1) | k (min−1) | R2 |
---|---|---|
0.5 | 0.0088 | 0.985 |
0.75 | 0.0096 | 0.992 |
1 | 0.0122 | 0.993 |
1.25 | 0.0115 | 0.990 |
1.5 | 0.0108 | 0.993 |
Initial pH | k (min−1) | R2 |
---|---|---|
1 | 0.0124 | 0.985 |
3 | 0.0169 | 0.936 |
5 | 0.0129 | 0.984 |
7 | 0.0107 | 0.986 |
9 | 0.0102 | 0.976 |
11 | 0.0076 | 0.949 |
13 | 0.0065 | 0.925 |
Initial Concentration (mg/L) | k (min−1) | R2 |
---|---|---|
10 | 0.0169 | 0.934 |
20 | 0.0084 | 0.989 |
30 | 0.0041 | 0.983 |
40 | 0.0027 | 0.985 |
50 | 0.0026 | 0.991 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Li, J.; Jiang, L.; Xu, M.; Xia, Z.; Tan, C.; Wang, Y.; Zuo, J. Preparation of g-C3N4/Bismuth Iodide/Tourmaline Composites and Their Photodegradation Performance of Amaranthine. Coatings 2023, 13, 1983. https://doi.org/10.3390/coatings13121983
Li J, Li J, Jiang L, Xu M, Xia Z, Tan C, Wang Y, Zuo J. Preparation of g-C3N4/Bismuth Iodide/Tourmaline Composites and Their Photodegradation Performance of Amaranthine. Coatings. 2023; 13(12):1983. https://doi.org/10.3390/coatings13121983
Chicago/Turabian StyleLi, Junsheng, Jiahui Li, Liming Jiang, Meiyan Xu, Zhi Xia, Chong Tan, Yuyang Wang, and Jinlong Zuo. 2023. "Preparation of g-C3N4/Bismuth Iodide/Tourmaline Composites and Their Photodegradation Performance of Amaranthine" Coatings 13, no. 12: 1983. https://doi.org/10.3390/coatings13121983
APA StyleLi, J., Li, J., Jiang, L., Xu, M., Xia, Z., Tan, C., Wang, Y., & Zuo, J. (2023). Preparation of g-C3N4/Bismuth Iodide/Tourmaline Composites and Their Photodegradation Performance of Amaranthine. Coatings, 13(12), 1983. https://doi.org/10.3390/coatings13121983