Epitaxial Stabilization of Perovskite ATeO3 Thin Films
Abstract
:1. Introduction
2. Materials and Methods
2.1. Thin Film Preparation
2.2. Characterization
3. Results and Discussion
3.1. X-ray Diffraction
3.2. Density Functional Theory Calculations
- The distorted perovskite phases of all three ATeO3 compounds are very close in energy to their bulk ground states, with energy differences <50 meV/atom. These small energy differences directly suggest that the perovskite structures can be energetically favorable over the bulk phases, which are geometrically less compatible with perovskite single-crystal substrates and would require large lattice alterations at substrate–film interfaces.
- The energy difference between the ideal Pm3m perovskite phases and the bulk phases reduces with increases in the A-site ion radius, from CaTeO3, over SrTeO3, to BaTeO3. This observation is in agreement with the fact that the ATeO3 moves farther into the perovskite stability range as the tolerance factor is increased.
- The energy difference between the cubic Pm3m and the orthorhombic Pnma phases decreases with increases in the A-site ion radius. This is another indication that the energy gained through oxygen octahedral rotations and tilts is reduced as the tolerance factor approaches one. This same trend can, for example, be observed in the AZrO3 series, where CaZrO3 has strong a−a−c+ octahedral rotation, while BaZrO3 has an ideal cubic perovskite structure.
3.3. Raman Studies
3.4. Optical Properties
3.5. Dielectric Characterization
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Goldschmidt, V.M. Die Gesetze der Krystallochemie. Naturwissenschaften 1926, 14, 477–485. [Google Scholar] [CrossRef]
- Filip, M.R.; Giustino, F. The geometric blueprint of perovskites. Proc. Natl. Acad. Sci. USA 2018, 115, 5397–5402. [Google Scholar] [CrossRef] [PubMed]
- Shannon, R.D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst. A 1976, 32, 751–767. [Google Scholar] [CrossRef]
- Oka, R.; Tsukimori, T.; Inoue, H.; Masui, T. Perovskite-type ALnO3 (A = Ca, Sr, Ba; Ln = Ce, Pr, Tb) oxides as environmentally friendly yellow pigments. J. Ceram. Soc. Jpn. 2017, 125, 652–656. [Google Scholar] [CrossRef]
- Yamada, T.; Iwasaki, H. New ferroelectric compound SrTeO3. Appl. Phys. Lett. 1972, 21, 89–90. [Google Scholar] [CrossRef]
- Vijatović Petrović, M.M.; Bobić, J.D.; Stojanović, B. History and Challenges of Barium Titanate: Part II. Sci. Sinter. 2008, 40, 235–244. [Google Scholar] [CrossRef]
- Stöger, B.; Weil, M.; Zobetz, E.; Giester, G. Polymorphism of CaTeO3 and solid solutions CaxSr1−xTeO3. Acta Crystallogr. B 2009, 65, 167–181. [Google Scholar] [CrossRef] [PubMed]
- Zavodnik, V.E.; Ivanov, S.A.; Stash, A.I. The α-phase of SrTeO3 at 295 K. Acta Cryst. E 2007, 63, i75–i76. [Google Scholar] [CrossRef]
- Koçak, M.; Platte, C.; Trömel, M. Über Verschiedene Formen von BaTeO3. Z. Anorg. Allg. Chem. 1979, 453, 93–97. [Google Scholar] [CrossRef]
- Giannozzi, P.; Baroni, S.; Bonini, N.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Chiarotti, G.L.; Cococcioni, M.; Dabo, I.; et al. QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 2009, 21, 395502. [Google Scholar] [CrossRef] [PubMed]
- Giannozzi, P.; Andreussi, O.; Brumme, T.; Bunau, O.; Buongiorno Nardelli, M.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Cococcioni, M.; et al. Advanced capabilities for materials modelling with Quantum ESPRESSO. J. Phys. Condens. Matter 2017, 29, 465901. [Google Scholar] [CrossRef] [PubMed]
- Manzoor, S.; Häusele, J.; Bush, K.A.; Palmstrom, A.F.; Carpenter, J.; Yu, Z.J.; Bent, S.F.; Mcgehee, M.D.; Holman, Z.C. Optical modeling of wide-bandgap perovskite and perovskite/silicon tandem solar cells using complex refractive indices for arbitrary-bandgap perovskite absorbers. Opt. Express 2018, 26, 27441–27460. [Google Scholar] [CrossRef] [PubMed]
- Damodaran, A.R.; Breckenfeld, E.; Chen, Z.; Lee, S.; Martin, L.W. Enhancement of Ferroelectric Curie Temperature in BaTiO3 Films via Strain-Induced Defect Dipole Alignment. Adv. Mater. 2014, 26, 6341–6347. [Google Scholar] [CrossRef] [PubMed]
- Perry, C.H.; Fertel, J.H.; McNelly, T.F. Temperature Dependence of the Raman Spectrum of SrTiO3 and KTaO3. J. Chem. Phys. 2004, 47, 1619. [Google Scholar] [CrossRef]
- Smirnov, M.; Kuznetsov, V.; Roginskii, E.; Cornette, J.; Dutreilh-Colas, M.; Noguera, O.; Masson, O.; Thomas, P. Raman spectra and structural peculiarities of TeO2-TeO3 mixed oxides. J. Phys. Condens. Matter 2018, 30, 475403. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Han, Y.; Ma, Y.; Zhu, P.; Wang, X.; Gao, C. Pressure effects on grain boundary, electrical and vibrational properties of the polycrystalline BaTeO3. EPL 2012, 98, 66006. [Google Scholar] [CrossRef]
- Bataliotti, M.D.; Costa, F.B.; Minussi, F.B.; Araújo, E.B.; de Lima, N.B.; Moraes, J.C.S. Characterization of tellurium dioxide thin films obtained through the Pechini method. J. Sol-Gel Sci. Technol. 2022, 103, 378–385. [Google Scholar] [CrossRef]
- Llanos, J.; Castillo, R.; Barrionuevo, D.; Espinoza, D.; Conejeros, S. The family of Ln2TeO6 compounds (Ln=Y, La, Sm and Gd): Characterization and synthesis by the Pechini sol–gel process. J. Alloys Compd. 2009, 485, 565–568. [Google Scholar] [CrossRef]
- Dejneka, A.; Tyunina, M.; Narkilahti, J.; Levoska, J.; Chvostová, D.; Jastrabík, L.; Trepakov, V. Tensile strain induced changes in the optical spectra of SrTiO3 epitaxial thin films. Phys. Solid State 2010, 52, 2082–2089. [Google Scholar] [CrossRef]
- Goubin, F.; Rocquefelte, X.; Whangbo, M.-H.; Montardi, Y.; Brec, R.; Jobic, S. Experimental and Theoretical Characterization of the Optical Properties of CeO2, SrCeO3, and Sr2CeO4 Containing Ce4+ (f0) Ions. Chem. Mater. 2004, 16, 662–669. [Google Scholar] [CrossRef]
CaTeO3 /STO | CaTeO3 /LAO | SrTeO3 /STO | SrTeO3 /LAO | BaTeO3 /STO | BaTeO3 /LAO | |
---|---|---|---|---|---|---|
a [Å] | 4.010 | 4.012 | 4.160 | 4.151 | 4.356 | 4.336 |
c [Å] | 4.014 | 4.014 | 4.107 | 4.117 | 4.342 | 4.324 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Herklotz, A.; Rus, F.S.; Koch, M.M.; Grove, K.M.; Bowen, M.S.; Cann, D.P.; Tippey, K.; Dörr, K. Epitaxial Stabilization of Perovskite ATeO3 Thin Films. Coatings 2023, 13, 2055. https://doi.org/10.3390/coatings13122055
Herklotz A, Rus FS, Koch MM, Grove KM, Bowen MS, Cann DP, Tippey K, Dörr K. Epitaxial Stabilization of Perovskite ATeO3 Thin Films. Coatings. 2023; 13(12):2055. https://doi.org/10.3390/coatings13122055
Chicago/Turabian StyleHerklotz, Andreas, Florina Stefania Rus, Martin M. Koch, Kyle M. Grove, Michael S. Bowen, David P. Cann, Kristin Tippey, and Kathrin Dörr. 2023. "Epitaxial Stabilization of Perovskite ATeO3 Thin Films" Coatings 13, no. 12: 2055. https://doi.org/10.3390/coatings13122055
APA StyleHerklotz, A., Rus, F. S., Koch, M. M., Grove, K. M., Bowen, M. S., Cann, D. P., Tippey, K., & Dörr, K. (2023). Epitaxial Stabilization of Perovskite ATeO3 Thin Films. Coatings, 13(12), 2055. https://doi.org/10.3390/coatings13122055