The Rapid Boiling of Thin Liquid Films with Different Thicknesses on Nanochannel Copper Plates: A Molecular Dynamics Study
Abstract
:1. Introduction
2. Simulation Models and Methods
3. Results and Discussion
3.1. Snapshot Analysis of Water Molecular Movement
3.2. Density Variations in Water Molecules during Boiling
3.3. Variations in Copper and Water Temperatures during Boiling
3.4. Evaporation Rate Variation during Boiling
3.5. Analysis of Microfluid Flow in Vapor–Liquid Coexisting near the Nanochannel Surface
4. Conclusions
- (1)
- The copper temperature dropped in all cases, while the water temperature rose rapidly within 10 ps. The water temperature increased as the water film thickness decreased. In case 1, the copper temperature was the greatest, and the heat transfer was the worst when the water film thickness was thinner than in the other cases. This is because there was too little working fluid for replenishment to the nucleation point.
- (2)
- A large water cluster, which formed in each case except case 1, separated from the copper plate heat source through vapor molecules, and the water cluster volume increased with the water film thickness if the nanochannels’ copper plate was completely covered by water (cases 2–4). The liquid plug phenomenon in the narrow space affected the continuous supply of liquid water and evaporation of the nucleation points in the nanochannels.
- (3)
- The large potential energy difference in the vapor–liquid coexistence zone on the nanochannels promoted the vapor–liquid flow, which has a great influence on the enhancement of heat transfer. Heat transfer performance was the best in case 2 when there was enough liquid water and a large potential energy difference. The maximum evaporation rate of water in case 2 was 25%, 45% higher than that in cases 3 and 4, respectively. The number of water molecules evaporated in case 2 was the highest and about 1000 more than that in case 1.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Carey, V.P. Liquid Vapor Phase Change Phenomena: An Introduction to the Thermophysics of Vaporization and Condensation Processes in Heat Transfer Equipment; Taylor&Francis Group: New York, NY, USA, 2008. [Google Scholar]
- Goldstein, R.J.; Ibele, W.E.; Patankar, S.V.; Simon, T.W.; Kuehn, T.H.; Strykowski, P.J.; Tamma, K.K.; Heberlein, J.V.R.; Davidson, J.H.; Bischof, J.; et al. Heat transfer—A review of 2004 literature. Int. J. Heat Mass Transf. 2010, 53, 4343–4396. [Google Scholar] [CrossRef]
- Tang, H.; Tang, Y.; Wan, Z.; Li, J.; Yuan, W.; Lu, L.; Li, Y.; Tang, K. Review of applications and developments of ultra-thin micro heat pipes for electronic cooling. Appl. Energy 2018, 223, 383. [Google Scholar] [CrossRef]
- Deng, D.; Zeng, L.; Sun, W. A review on flow boiling enhancement and fabrication of enhanced microchannels of microchannel heat sinks. Int. J. Heat Mass Transf. 2021, 175, 121332. [Google Scholar] [CrossRef]
- Chen, G.; Tang, Y.; Duan, L.; Tang, H.; Zhong, G.; Wan, Z.; Zhang, S.; Fu, T. Thermal performance enhancement of micro-grooved aluminum flat plate heat pipes applied in solar collectors. Renew. Energy 2020, 146, 2234–2242. [Google Scholar] [CrossRef]
- Kim, M.-W.; Kim, T.G.; Jo, H.S.; Lee, J.-G.; James, S.C.; Choi, M.S.; Kim, W.Y.; Yang, J.S.; Choi, J.; Yoon, S.S. Nano-textured surfaces using hybrid micro- and nano-materials for efficient water cooling. Int. J. Heat Mass Transf. 2018, 123, 1120–1127. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, T.; Jiang, Y.; Kim, S.; Guo, C. A study of boiling on surfaces with temperature-dependent wettability by lattice Boltzmann method. Int. J. Heat Mass Transf. 2018, 122, 775–784. [Google Scholar] [CrossRef]
- Kim, D.E.; Yu, D.I.; Jerng, D.W.; Kim, M.H.; Ahn, H.S. Review of boiling heat transfer enhancement on micro/nanostructured surfaces. Exp. Therm. Fluid Sci. 2015, 66, 173–196. [Google Scholar] [CrossRef]
- Cao, Z.; Wu, Z.; Pham, A.-D.; Yang, Y.; Abbood, S.; Falkman, P.; Ruzgas, T.; Albèr, C.; Sundén, B. Pool boiling of HFE-7200 on nanoparticle-coating surfaces: Experiments and heat transfer analysis. Int. J. Heat Mass Transf. 2019, 133, 548. [Google Scholar] [CrossRef]
- Liu, B.; Liu, J.; Zhou, J.; Yuan, B.; Zhang, Y.; Wei, J.; Wang, W. Experimental study of subcooled boiling pool heat transfer and its “hook back” phenomenon on micro/nanostructured surfaces. Int. Commun. Heat Mass Transf. 2019, 100, 73–82. [Google Scholar] [CrossRef]
- Shen, C.; Zhang, C.; Bao, Y.; Wang, X.; Liu, Y.; Ren, L. Experimental investigation on enhancement of nucleate pool boiling heat transfer using hybrid wetting pillar surface at low heat fluxes. Int. J. Therm. Sci. 2018, 130, 47–58. [Google Scholar] [CrossRef]
- Chen, L.; Wang, S.-Y.; Xiang, X.; Tao, W.-Q. Mechanism of surface nanostructure changing wettability: A molecular dynamics simulation. Comput. Mater. Sci. 2020, 171, 109223. [Google Scholar] [CrossRef]
- Zhao, Z.; Zhang, J.; Jia, D.; Zhao, K.; Zhang, X.; Jiang, P. Thermal performance analysis of pool boiling on an enhanced surface modified by the combination of microstructures and wetting properties. Appl. Therm. Eng. 2017, 117, 417–426. [Google Scholar] [CrossRef]
- Phan, H.T.; Caney, N.; Marty, P. Surface wettability control by nanocoating: The effects on pool boiling heat transfer and nucleation mechanism. Int. J. Heat Mass Transf. 2009, 52, 5459–5471. [Google Scholar] [CrossRef]
- Milczarek, M.; Jarząbek, D.M.; Jenczyk, P.; Bochenek, K.; Filipiak, M. Novel paradigm in AFM probe fabrication: Broadened range of stiffness, materials, and tip shapes. Tribol. Int. 2023, 180, 108308. [Google Scholar] [CrossRef]
- Yin, X.; Hu, C.; Bai, M.; Lv, J. Molecular dynamic simulation of rapid boiling of nanofluids on different wetting surfaces with depositional nanoparticles. Int. J. Multiph. Flow 2019, 115, 9–18. [Google Scholar] [CrossRef]
- Liu, H.; Ahmad, S.; Chen, J.; Zhao, J. Molecular dynamics study of the nanoscale boiling heat transfer process on nanostructured surfaces. Int. Commun. Heat Mass Transf. 2020, 119, 104963. [Google Scholar] [CrossRef]
- Hens, A.; Agarwal, R.; Biswas, G. Nanoscale study of boiling and evaporation in a liquid Ar film on a Pt heater using molecular dynamics simulation. Int. J. Heat Mass Transf. 2014, 71, 303–312. [Google Scholar] [CrossRef]
- Wang, W.; Huang, S.; Luo, X. MD simulation on nano-scale heat transfer mechanism of sub-cooled boiling on nano-structured surface. Int. J. Heat Mass Transf. 2016, 100, 276–286. [Google Scholar] [CrossRef]
- Zhang, S.; Hao, F.; Chen, H.; Yuan, W.; Tang, Y.; Chen, X. Molecular dynamics simulation on explosive boiling of liquid argon film on copper nanochannels. Appl. Therm. Eng. 2017, 113, 208–214. [Google Scholar] [CrossRef]
- Shavik, S.M.; Hasan, M.N.; Monjur Morshed, A.K.M. Molecular Dynamics Study on Explosive Boiling of Thin Liquid Argon Film on Nanostructured Surface under Different Wetting Conditions. J. Electron. Packag. 2016, 138, 010904. [Google Scholar] [CrossRef]
- Li, L.; Ji, P.; Zhang, Y. Molecular dynamics simulation of condensation on nanostructured surface in a confined space. Appl. Phys. A 2016, 122, 496. [Google Scholar] [CrossRef]
- Li, X.; Cole, I.; Tu, J. A review of nucleate boiling on nanoengineered surfaces–The nanostructures, phenomena and mechanisms. Int. J. Heat Mass Transf. 2019, 141, 20–33. [Google Scholar] [CrossRef]
- Eid, M.M.A.A.; Zubir, M.N.M.; Muhamad, M.R.; Kazi, S.N.; Aznam, S.M.; Rony, M.H.; Ibrahim, F.A.; Alam, M.S.; Sadri, R. Experimental and numerical investigations on the effect of a novel internal surface micro-grooving toward improving convective heat transfer performance of tube heat exchangers. Phys. Fluids 2023, 35, 075114. [Google Scholar] [CrossRef]
- Chen, Y.; Zou, Y.; Sun, D.; Wang, Y.; Yu, B. Molecular dynamics simulation of bubble nucleation on nanostructure surface. Int. J. Heat Mass Transf. 2018, 118, 1143–1151. [Google Scholar] [CrossRef]
- Fan, J.; Wu, H.; Wang, F. Evaporation-driven liquid flow through nanochannels. Phys. Fluids 2020, 32, 012001. [Google Scholar] [CrossRef]
- Hanks, D.F.; Lu, Z.; Sircar, J.; Salamon, T.R.; Antao, D.S.; Bagnall, K.R.; Barabadi, B.; Wang, E.N. Nanoporous membrane device for ultra high heat flux thermal management. Microsyst. Nanoeng. 2018, 4, 1. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Chen, J.; Chen, Y.; Luo, X.; Liang, Y.; Yang, Z. Effectiveness of actively adjusting vapour liquid in the evaporator for heat transfer enhancement. Appl. Therm. Eng. Des. Process. Equip. Econ. 2022, 200, 117696. [Google Scholar] [CrossRef]
- Jorgensen, W.L.; Madura, J.D. Temperature and size dependence for Monte Carlo simulations of TIP4P water. Mol. Phys. 1985, 56, 1381–1392. [Google Scholar] [CrossRef]
- Mahoney, M.W.; Jorgensen, W.L. A five-site model for liquid water and the reproduction of the density anomaly by rigid, nonpolarizable potential functions. J. Chem. Phys. 2000, 112, 8910. [Google Scholar] [CrossRef]
- Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graph. 1996, 14, 33–38. [Google Scholar] [CrossRef]
- Zarringhalam, M.; Ahmadi-Danesh-Ashtiani, H.; Toghraie, D.; Fazaeli, R. Molecular dynamic simulation to study the effects of roughness elements with cone geometry on the boiling flow inside a microchannel. Int. J. Heat Mass Transf. 2019, 141, 1–8. [Google Scholar] [CrossRef]
- Zhang, P.; Jin, L.; Zhou, L.; Du, X.; Yang, Y. Heat transfer around copper nanoparticle with high superheat in water pool: A molecular dynamics simulation. Therm. Sci. Eng. Prog. 2018, 8, 509–516. [Google Scholar] [CrossRef]
- Isaiev, M.; Burian, S.; Bulavin, L.; Gradeck, M.; Lemoine, F.; Termentzidis, K. Efficient tuning of potential parameters for liquid–solid interactions. Mol. Simul. 2015, 42, 910–915. [Google Scholar] [CrossRef]
- Diaz, R.; Guo, Z. Molecular dynamics study of wettability and pitch effects on maximum critical heat flux in evaporation and pool boiling heat transfer. Numer. Heat Transf. Part A Appl. 2017, 72, 891–903. [Google Scholar] [CrossRef]
- Wu, N.; Zeng, L.; Chen, J.; Fu, T.; Zhang, F.; Zeng, Y. Influence of Tuning Potential Parameters on Wettability of Smooth Copper Plate: A Molecular Dynamic Study. Coatings 2023, 13, 1371. [Google Scholar] [CrossRef]
- Fu, T.; Wu, N.; Lu, C.; Wang, J.; Wang, Q. Effect of nanostructure on wettability on copper surface: A molecular dynamic study. Mol. Simul. 2018, 45, 35–39. [Google Scholar] [CrossRef]
- Mao, Y.; Zhang, Y. Molecular dynamics simulation on rapid boiling of water on a hot copper plate. Appl. Therm. Eng. 2014, 62, 607–612. [Google Scholar] [CrossRef]
- Ryckaert, J.P.; Ciccotti, G.; Berendsen, H.J. Numerical Integration of the Cartesian Equations of Motion of a System with Constraints:Molecular Dynamics of n-Alkanes. J. Comput. Phys. 1977, 23, 327–341. [Google Scholar] [CrossRef]
- Li, W.; Wang, Z.; Yang, F. Supercapillary architecture-activated two-phase boundary layer structures for highly stable and efficient flow boiling heat transfer. Adv. Mater. 2020, 32, 1905117. [Google Scholar] [CrossRef]
- Wu, N.; Zeng, L.; Fu, T.; Wang, Z.; Lu, C. Molecular dynamics study of rapid boiling of thin liquid water film on smooth copper surface under different wettability conditions. Int. J. Heat Mass Transf. 2020, 147, 118905. [Google Scholar] [CrossRef]
- Yang, Y.; Zhu, K.; Wang, Y.; Wei, J.; Zheng, M.; Cui, Z. Experimental investigation and visual observation of a vapor–liquid separated flat loop heat pipe evaporator. Appl. Therm. Eng. 2016, 101, 71–78. [Google Scholar] [CrossRef]
Parameter | Value | Units |
---|---|---|
0.006998 | eV | |
3.16438 | Å | |
−1.04 | e | |
0.52 | e | |
0.06387 | eV | |
2.7172 | Å | |
274–306 | GPa | |
3.615 | Å |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, N.; Zeng, L.; Fu, T.; Chen, J.; Zhang, F.; Zeng, Y.; Peng, S. The Rapid Boiling of Thin Liquid Films with Different Thicknesses on Nanochannel Copper Plates: A Molecular Dynamics Study. Coatings 2023, 13, 2057. https://doi.org/10.3390/coatings13122057
Wu N, Zeng L, Fu T, Chen J, Zhang F, Zeng Y, Peng S. The Rapid Boiling of Thin Liquid Films with Different Thicknesses on Nanochannel Copper Plates: A Molecular Dynamics Study. Coatings. 2023; 13(12):2057. https://doi.org/10.3390/coatings13122057
Chicago/Turabian StyleWu, Nini, Liangcai Zeng, Ting Fu, Juan Chen, Feng Zhang, Yun Zeng, and Shuai Peng. 2023. "The Rapid Boiling of Thin Liquid Films with Different Thicknesses on Nanochannel Copper Plates: A Molecular Dynamics Study" Coatings 13, no. 12: 2057. https://doi.org/10.3390/coatings13122057
APA StyleWu, N., Zeng, L., Fu, T., Chen, J., Zhang, F., Zeng, Y., & Peng, S. (2023). The Rapid Boiling of Thin Liquid Films with Different Thicknesses on Nanochannel Copper Plates: A Molecular Dynamics Study. Coatings, 13(12), 2057. https://doi.org/10.3390/coatings13122057