Application of Edible Film with Asian Plant Extracts as an Innovative Food Packaging: A Review
Abstract
:1. Introduction
2. EF Formulations Containing Different APE and EOs
3. Characterization of EF Incorporated with APE and EOs
3.1. Physicochemical Properties
3.1.1. Thickness
3.1.2. Moisture Content and Water Solubility
3.1.3. Water Vapor Permeability
3.2. Mechanical Properties
3.2.1. Tensile Strength
3.2.2. Elongation at Break
3.3. In Vitro Antioxidant and Antibacterial Activity
4. Food Application of EF Incorporated with APE and EOs
4.1. pH
4.2. Colour
4.3. Lipid Oxidation
4.4. Microbiological Analysis
5. Future Prospects
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Bourtoom, T. Edible films and coatings: Characteristics and properties. Int. Food Res. J. 2008, 15, 237–248. [Google Scholar]
- Díaz-Montes, E.; Castro-Muñoz, R. Edible films and coatings as food-quality preservers: An overview. Foods 2021, 10, 249. [Google Scholar] [CrossRef] [PubMed]
- Han, J.H. Edible films and coatings: A review. Innov. Food Packag. 2014, 213–255. [Google Scholar]
- Hintz, T.; Matthews, K.K.; Di, R. The use of plant antimicrobial compounds for food preservation. Biomed Res. Int. 2015, 246264. [Google Scholar] [CrossRef] [Green Version]
- Lim, L.I.; Tan, H.L.; Pui, L.P. Development and characterization of alginate-based edible film incorporated with hawthorn berry (crataegus pinnatifida) extract. J. Food Meas. Charact. 2021, 15, 2540–2548. [Google Scholar] [CrossRef]
- Wang, X.; Yong, H.; Gao, L.; Li, L.; Jin, M.; Liu, J. Preparation and characterization of antioxidant and pH-sensitive films based on chitosan and black soybean seed coat extract. Food Hydrocoll. 2019, 89, 56–66. [Google Scholar] [CrossRef]
- Fajri, M.; Julianti, E.; Silalahi, J. Porang glucomannan based edible film with the addition of mangosteen peel extract. IOP Conf. Ser. Environ. Earth Sci. 2021, 782, 032103. [Google Scholar] [CrossRef]
- Saxena, A.; Sharma, L.; Maity, T. Enrichment of edible coatings and films with plant extracts or essential oils for the preservation of fruits and vegetables. Biopolym. Based Formul. 2020, 859–880. [Google Scholar]
- Bojorges, H.; Ríos-Corripio, M.A.; Hernández-Cázares, A.S.; Hidalgo-Contreras, J.V.; Contreras-Oliva, A. Effect of the application of an edible film with turmeric (Curcuma longa L.) on the oxidative stability of meat. Food Sci. Nutr. 2020, 8, 4308–4319. [Google Scholar] [CrossRef]
- Guo, Z.; Wu, X.; Zhao, X.; Fan, J.; Lu, X.; Wang, L. An edible antioxidant film of Artemisia sphaerocephala Krasch. gum with Sophora japonica extract for oil packaging. Food Packag. Shelf Life 2020, 24, 100460. [Google Scholar] [CrossRef]
- Putsakum, G.; Lee, D.S.; Suthiluk, P.; Rawdkuen, S. The properties of gelatin film-neem extract and its effectiveness for preserving minced beef. Packag. Technol. Sci. 2018, 31, 611–620. [Google Scholar] [CrossRef]
- Lee, K.Y.; Yang, H.J.; Song, K.B. Application of a puffer fish skin gelatin film containing Moringa oleifera Lam. leaf extract to the packaging of Gouda cheese. J. Food Sci. Technol. 2016, 53, 3876–3883. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yanwong, S.; Threepopnatkul, P. Effect of peppermint and citronella essential oils on properties of fish skin gelatin edible films. IOP Conf. Ser. Mater. Sci. Eng. 2015, 87, 012064. [Google Scholar] [CrossRef]
- Tan, L.F.; Elaine, E.; Pui, L.P.; Nyam, K.L.; Yusof, Y.A. Development of chitosan edible film incorporated with Chrysanthemum morifolium essential oil. Acta Sci. Pol. Technol. Aliment. 2021, 20, 55–66. [Google Scholar] [PubMed]
- Alexandre, E.M.C.; Lourenço, R.V.; Bittante, A.M.Q.B.; Moraes, I.C.F.; Sobral, P.J.d.A. Gelatin-based films reinforced with montmorillonite and activated with nanoemulsion of ginger essential oil for food packaging applications. Food Packag. Shelf Life 2016, 10, 87–96. [Google Scholar] [CrossRef]
- Chen, W.; Ma, S.; Wang, Q.; McClements, D.J.; Liu, X.; Ngai, T.; Liu, F. Fortification of edible films with bioactive agents: A review of their formation, properties, and application in food preservation. Crit. Rev. Food Sci. Nutr. 2021, 62, 1–27. [Google Scholar] [CrossRef]
- Rawdkuen, S. Edible films incorporated with active compounds: Their properties and application. In Active Antimicrobial Food Packaging; Isıl, V., Uzunlu, S., Eds.; IntechOpen: London, UK, 2019; pp. 71–85. [Google Scholar]
- Pavli, F.; Argyri, A.A.; Skandamis, P.; Nychas, G.-J.; Tassou, C.; Chorianopoulos, N. Antimicrobial activity of oregano essential oil incorporated in sodium alginate edible films: Control of listeria monocytogenes and spoilage in ham slices treated with high pressure processing. Materials 2019, 12, 3726. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Wu, X.; Chen, J.; He, J. Effects of cinnamon essential oil on the physical, mechanical, structural and thermal properties of cassava starch-based edible films. Int. J. Biol. Macromol. 2021, 184, 574–583. [Google Scholar] [CrossRef]
- Liu, Z.; Lin, D.; Shen, R.; Zhang, R.; Liu, L.; Yang, X. Konjac glucomannan-based edible films loaded with thyme essential oil: Physical properties and antioxidant-antibacterial activities. Food Packag. Shelf Life 2021, 29, 100700. [Google Scholar] [CrossRef]
- Řebíčková, K.; Bajer, T.; Šilha, D.; Houdková, M.; Ventura, K.; Bajerová, P. Chemical composition and determination of the antibacterial activity of essential oils in liquid and vapor phases extracted from two different southeast asian herbs-houttuynia cordata (saururaceae) and persicaria odorata (polygonaceae). Molecules 2020, 25, 2432. [Google Scholar] [CrossRef]
- Chana-Thaworn, J.; Chanthachum, S.; Wittaya, T. Properties and antimicrobial activity of edible films incorporated with kiam wood (Cotyleobium lanceotatum) extract. LWT 2011, 44, 284–292. [Google Scholar] [CrossRef]
- Kumar, N.; Pratibha, N.; Petkoska, A.T.; AL-Hilifi, S.A.; Fawole, O.A. Effect of chitosan–pullulan composite edible coating functionalized with pomegranate peel extract on the shelf life of mango (mangifera indica). Coatings 2021, 11, 764. [Google Scholar] [CrossRef]
- Silva, V.D.M.; Macedo, M.C.C.; Rodrigues, C.G.; Santos, A.N.; Loyola, A.C.F.; Fante, C.A. Biodegradable edible films of ripe banana peel and starch enriched with extract of Eriobotrya japonica leaves. Food Biosci. 2020, 38, 100750. [Google Scholar] [CrossRef]
- Tongnuanchan, P.; Benjakul, S.; Prodpran, T. Physico-chemical properties, morphology and antioxidant activity of film from fish skin gelatin incorporated with root essential oils. J. Food Eng. 2013, 117, 350–360. [Google Scholar] [CrossRef]
- Thuong, N.T.; Ngoc Bich, H.T.; Thuc, C.N.H.; Quynh, B.T.P.; Minh, L.V. Preparation and characterization of piper betle linn. leaf extract incorporated chitosan films as potential active food packaging materials. Chem. Select. 2019, 4, 8150–8157. [Google Scholar] [CrossRef]
- Haug, I.J. Gelatin. Handbook of hydrocolloids; Phillips, G.O., Williams, P.A., Eds.; Woodhead Publishing Limited: Cambridge, UK, 2009; Volume 6, pp. 142–163. [Google Scholar]
- Xiaoqing, Z.; My Dieu, D.; Casey, P.; Sulistio, A.; Qiao, G.G.; Lundin, L.; Lillford, P.; Kosaraju, S. Chemical modification of gelatin by a natural phenolic cross-linker, tannic acid. J. Agric. Food Chem. 2010, 58, 6809–6815. [Google Scholar]
- Sazedul, H.; Soottawat, B.; Thummanoon, P. Effects of partial hydrolysis and plasticizer content on the properties of film from cuttlefish (Sepia pharaonis) skin gelatin. Food Hydrocoll. 2011, 25, 82–90. [Google Scholar]
- Rhim, J.W.; Park, H.M.; Ha, C.S. Bio-nanocomposites for food packaging applications. Prog. Polym. Sci. 2013, 38, 1629–1652. [Google Scholar] [CrossRef]
- Rinaudo, M.; Pavlov, G.; Desbrières, J. Influence of acetic acid concentration on the solubilization of chitosan. Polymer 1999, 40, 7029–7032. [Google Scholar] [CrossRef]
- Hou, K.; Xu, Y.; Cen, K.; Gao, C.; Feng, X.; Tang, X. Nanoemulsion of cinnamon essential oil Co-emulsified with hydroxypropyl-β-cyclodextrin and Tween-80: Antibacterial activity, stability and slow release performance. Food Biosci. 2021, 43, 101232. [Google Scholar] [CrossRef]
- Quezada-Gallo, J.A. Delivery of food additives and antimicrobials using edible films and coatings. In Edible Films and Coatings for Food Applications; Huber, K., Embuscado, M., Eds.; Springer: New York, NY, USA, 2009. [Google Scholar]
- Franssen, L.R.; Krochta, J.M. Edible coatings containing natural antimicrobials for processed foods. In Natural Antimicrobials for Minimal Processing of Foods; Roller, S., Ed.; CRC: Cambridge, UK; Boca Raton, FL, USA, 2003; pp. 250–262. [Google Scholar]
- Jurikova, T.; Sochor, J.; Rop, O.; Mlcek, J.; Balla, S.; Szekeres, L.; Adam, V.; Kizek, R. Polyphenolic profile and biological activity of Chinese hawthorn (Crataegus pinnatifida bunge) fruits. Molecules 2012, 17, 14490–14509. [Google Scholar] [PubMed] [Green Version]
- Yang, J.X.; Guo, J.; Yuan, J.F. In vitro antioxidant properties of rutin. LWT 2008, 41, 1060–1066. [Google Scholar] [CrossRef]
- Sun, L.; Sun, J.; Chen, L.; Niu, P.; Yang, X.; Guo, Y. Preparation and characterization of chitosan film incorporated with thinned young apple polyphenols as an active packaging material. Carbohydr. Polym. 2017, 163, 81–91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galus, S.; Lenart, A. Development and characterization of composite edible films based on sodium alginate and pectin. J. Food Eng. 2013, 115, 459–465. [Google Scholar] [CrossRef]
- McHugh, T.H.; Avena-Bustillos, R.; Krochta, J.M. Hydrophilic edible films: Modified procedure for water vapor permeability and explanation of thickness effects. J. Food Sci. 1993, 58, 899–903. [Google Scholar] [CrossRef]
- Kan, J.; Liu, J.; Yong, H.; Liu, Y.; Qin, Y.; Liu, J. Development of active packaging based on chitosan-gelatin blend films functionalized with Chinese hawthorn (Crataegus pinnatifida) fruit extract. Int. J. Biol. Macromol. 2019, 140, 384–392. [Google Scholar] [CrossRef]
- Zaman, N.B.K.; Lin, N.K.; Phing, P.L. Chitosan film incorporated with Garcinia atroviridis for the packaging of Indian mackerel (Rastrelliger kanagurta). Cien. Agrotecnol. 2018, 42, 666–675. [Google Scholar] [CrossRef]
- Ebrahimi, B.; Mohammadi, R.; Rouhi, M.; Mortazavian, A.M.; Shojaee-Aliabadi, S.; Koushki, M.R. Survival of probiotic bacteria in carboxymethyl cellulose-based edible film and assessment of quality parameters. LWT 2018, 87, 54–60. [Google Scholar] [CrossRef]
- Bravin, B.; Peressini, D.; Sensidoni, A. Development and application of polysaccharide-lipid edible coating to extend shelf-life of dry bakery products. J. Food Eng. 2006, 76, 280–290. [Google Scholar] [CrossRef]
- Musso, Y.S.; Salgado, P.R.; Mauri, A.N. Smart edible films based on gelatin and curcumin. Food Hydrocoll. 2017, 66, 8–15. [Google Scholar] [CrossRef] [Green Version]
- Gontard, N.; Guilbert, S.; Cuq, J.-L. Edible wheat gluten films: Influence of the main process variables on film properties using response surface methodology. J. Food Sci. 1992, 57, 190–195. [Google Scholar] [CrossRef]
- Ghasemlou, M.; Khodaiyan, F.; Oromiehie, A.; Yarmand, M.S. Development and characterisation of a new biodegradable edible film made from kefiran, an exopolysaccharide obtained from kefir grains. Food Chem. 2011, 127, 1496–1502. [Google Scholar] [CrossRef]
- Labuza, T.; Hyman, C. Moisture migration and control in multi-domain foods. Trends Food Sci. Technol 1998, 9, 47–55. [Google Scholar] [CrossRef]
- Jutaporn, C.T.; Suphitchaya, C.; Thawien, W. Antimicrobial activity and characteristics of edible films incorporated with Phayom wood (Shorea tolura) extract. Int. Food Res. J. 2011, 18, 39–53. [Google Scholar]
- Ekramian, S.; Abbaspour, H.; Roudi, B.; Amjad, L.; Mohammadi Nafchi, A. Influence of nigella sativa L. extract on physico-mechanical and antimicrobial properties of sago starch film. J. Polym. Environ. 2020, 29, 201–208. [Google Scholar] [CrossRef]
- Farahnaky, A.; Saberi, B.; Majzoobi, M. Effect of glycerol on physical and mechanical properties of wheat starch edible films. J. Texture Stud. 2013, 44, 176–186. [Google Scholar] [CrossRef]
- Saberi, B.; Vuong, Q.V.; Chockchaisawasdee, S.; Golding, J.B.; Scarlett, C.J.; Stathopoulos, C.E. Mechanical and physical properties of pea starch edible films in the presence of glycerol. J. Food Proc. Preserv. 2016, 40, 1339–1351. [Google Scholar] [CrossRef]
- Lee, Y.Y.; Elaine, E.; Yusof, Y.A.; Pui, L.P. Development of Milk Protein Edible Films Incorporated with Lactobacillus rhamnosus GG. BioResources 2020, 15, 6960–6973. [Google Scholar] [CrossRef]
- Kang, H.J.; Min, S.C. Potato peel- based biopolymer film development using high-pressure homogenization, irradiation, and ultrasound. LWT 2010, 43, 903–909. [Google Scholar] [CrossRef]
- Wang, L.; Xue, J.; Zhang, Y. Preparation and characterization of curcumin loaded caseinate/zein nanocomposite film using pH driven method. Ind. Crops Prod. 2019, 130, 71–80. [Google Scholar] [CrossRef]
- Gilbert, J.; Cheng, C.J.; Jones, O.G. Vapor barrier properties and mechanical behaviors of composite hydroxypropyl methylcelluose/zein nanoparticle films. Food Biophys. 2018, 13, 25–36. [Google Scholar] [CrossRef]
- Elsabee, M.Z.; Abdou, E.S. Chitosan based edible films and coatings: A review. Mater. Sci. Eng. 2013, 33, 1819–1841. [Google Scholar] [CrossRef] [PubMed]
- Nurindra, A.P.; Alamsjah, M.A.; Sudarno, S. Characterization of edible films from lindur mangrove propagul starch (bruguiera gymnorrhiza) by adding carboxymethyl cellulose (cmc) as plasticizer. Sci. J. Fish. Marit. Aff. 2015, 7, 125–132. [Google Scholar]
- Noronha, C.M.; de Carvalho, S.M.; Lino, R.C.; Barreto, P.L.M. Characterization of antioxidant methylcellulose film incorporated with α-tocopherol nanocapsules. Food Chem. 2014, 159, 529–535. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, J.; Liu, S.; Wu, Q.; Gu, Y.; Kan, J.; Jin, C. Effect of protocatechuic acid incorporation on the physical, mechanical, structural and antioxidant properties of chitosan film. Food Hydrocoll. 2017, 73, 90–100. [Google Scholar] [CrossRef]
- Sivanasvaran, S.-N.; Kong, I.; Tan, H.L.; Pui, L.P. Addition of glycerol and sodium chloride into Garcinia atroviridis chitosan film, and its application for wrapping of chicken meat. MJAS 2021, 25, 399–414. [Google Scholar]
- Arcan, I.; Yemenicioğlu, A. Incorporating phenolic compounds opens a new perspective to use zein films as flexible bioactive packaging materials. Food Res. Int. 2011, 44, 550–556. [Google Scholar] [CrossRef] [Green Version]
- Chan, H.M.; Nyam, K.L.; Yusof, Y.A.; Pui, L.P. Investigation of properties of polysaccharide-based edible film with functional Melastoma Malabathricum extract. Carpathian J. Food Sci. Technol. 2020, 12, 120–134. [Google Scholar]
- Zehiroglu, C.; Ozturk Sarikaya, S.B. The importance of antioxidants and place in today’s scientific and technological studies. J. Food Sci. Technol. 2019, 56, 4757–4774. [Google Scholar] [CrossRef]
- Bhargav, H.S.; Shastri, S.D.; Poornav, S.P.; Darshan, K.M.; Nayak, M.M. Measurement of the zone of inhibition of an antibiotic. In Proceedings of the IACC, Bhimavaram, India, 27–28 February 2016; pp. 409–414. [Google Scholar]
- Daneshzadeh, M.S.; Abbaspour, H.; Amjad, L.; Nafchi, A.M. An investigation on phytochemical, antioxidant and antibacterial properties of extract from Eryngium billardieri F. Delaroche. J. Food Meas. Charact. 2020, 14, 708–715. [Google Scholar] [CrossRef]
- Naseer, M.; Aslam, U.; Khalid, B.; Chen, B. Green route to synthesize Zinc oxide nanoparticles using leaf extracts of Cassia fistula and Melia azadarach and their antibacterial potential. Sci. Rep. 2020, 10, 9055. [Google Scholar] [CrossRef]
- Day, B.P.I. Active packaging. In Food Packaging Technology; Coles, R., McDowell, D., Kirwan, M.J., Eds.; CRC Press: Boca Raton, FL, USA, 2003. [Google Scholar]
- Jayasena, D.D.; Jung, S.; Kim, H.J.; Bae, Y.S.; Yong, H.I.; Lee, J.H.; Jo, C. Comparison of quality traits of meat from korean native chickens and broilers used in two different traditional korean cuisines. Asian-Australas. J. Anim. Sci. 2013, 26, 10381046. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Battisti, R.; Fronza, N.; Júnior, Á.V.; da Silveira, S.M.; Damas, M.S.P.; Quadri, M.G.N. Gelatin-coated paper with antimicrobial and antioxidant effect for beef packaging. Food Packag. Shelf Life 2017, 11, 115–124. [Google Scholar] [CrossRef]
- Kuswandi, B.; Nurfawaidi, A. On-package dual sensors label based on pH indicators for real-time monitoring of beef freshness. Food Control 2017, 82, 91–100. [Google Scholar] [CrossRef]
- Lorenzo, J.M.; Batlle, R.; Gómez, M. Extension of the shelf life of foal meat with two antioxidant active packaging systems. LWT 2014, 59, 181–188. [Google Scholar] [CrossRef]
- Chan, E.W.; Ng, V.P.; Tan, V.V.; Low, Y.Y. Antioxidant and antibacterial properties of Alpinia galanga, Curcuma longa, and Etlingera elatior (Zingiberaceae). Pharmacogn. J. 2011, 3, 54–61. [Google Scholar] [CrossRef] [Green Version]
- Pathare, P.B.; Opara, U.L.; Al-Said, F.A.J. Colour Measurement and analysis in fresh and processed foods: A review. Food Bioprocess. Technol. 2013, 6, 36–60. [Google Scholar] [CrossRef]
- Hoving-Bolink, A.H.; Hulsegge, B.; Eikelenboom, G.; Klont, R.E.; van Dijk, A.; Barnier, V.M.H.; Smulders, F.J.M. Effects of rate of pH fall, time of deboning, aging period, and their interaction on veal quality characteristics. J. Anim. Sci. 2000, 78, 18451851. [Google Scholar]
- Warner, R. Measurements of water-holding capacity and color: Objective and subjective. In Encyclopedia of Meat Sciences; Klinth, J.W., Dikeman, M., Devine, C., Eds.; Academic Press: Cambridge, MA, USA, 2014; pp. 164–171. [Google Scholar]
- Xiong, Y.; Li, S.; Warner, R.D.; Fang, Z.X. Effect of oregano essential oil and resveratrol nanoemulsion loaded pectin edible coating on the preservation of pork loin in modified atmosphere packaging. Food Control 2020, 114, 107226. [Google Scholar] [CrossRef]
- Dehghani, P.; Hosseini, S.M.H.; Golmakani, M.T.; Majdinasab, M.; Esteghlal, S. Shelf-lifeextension of refrigerated rainbow trout fillets using total Farsi gum-based coatings containing clove and thyme essential oils emulsions. Food Hydrocoll. 2018, 77, 677–688. [Google Scholar] [CrossRef]
- Lee, M.-A.; Choi, J.-H.; Choi, Y.-S.; Han, D.-J.; Kim, H.-Y.; Shim, S.-Y.; Kim, C.-J. The antioxidative properties of mustard leaf (Brassica juncea) kimchi extracts on refrigerated raw ground pork meat against lipid oxidation. Meat Sci. 2010, 84, 498–504. [Google Scholar] [CrossRef] [PubMed]
- Pulido-Moran, M.; Moreno-Fernandez, J.; Ramirez-Tortosa, C.; Ramirez-Tortosa, M. Curcumin and health. Molecules 2016, 21, 264. [Google Scholar] [CrossRef] [PubMed]
- Mistry, K.S.; Sanghvi, Z.; Parmar, G.; Shah, S. The antimicrobial activity of Azadirachta indica, Mimusops elengi, Tinospora cardifolia, Ocimum sanctum and 2% chlorhexidine gluconate on common endodontic pathogens: An in vitro study. Eur. J. Dent. 2014, 8, 172–177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barradas, T.N.; de Holanda e Silva, K.G. Nanoemulsions of essential oils to improve solubility, stability and permeability: A review. Environ. Chem. Lett. 2021, 19, 1153–1171. [Google Scholar] [CrossRef]
- Arnon-Rips, H.; Porat, R.; Poverenov, E. Enhancement of agricultural product quality and storability using citral-based edible coatings; The valuable effect of nano- emulsification in a solid-state delivery on fresh-cut melons model. Food Chem. 2019, 277, 205–212. [Google Scholar] [CrossRef]
- Donsì, F.; Annunziata, M.; Sessa, M.; Ferrari, G. Nanoencapsulation of essential oils to enhance their antimicrobial activity in foods. LWT 2011, 44, 1908–1914. [Google Scholar] [CrossRef]
- Salvia-Trujillo, L.; Rojas-Graü, A.; Soliva-Fortuny, R.; Martín-Belloso, O. Physicochemical characterization and antimicrobial activity of food-grade emulsions and nanoemulsions incorporating essential oils. Food Hydrocoll. 2015, 43, 547–556. [Google Scholar] [CrossRef]
- Acevedo-Fani, A.; Salvia-Trujillo, L.; Rojas-Graü, M.A.; Martín-Belloso, O. Edible films from essential-oil-loaded nanoemulsions: Physicochemical characterization and antimicrobial properties. Food Hydrocoll. 2015, 47, 168–177. [Google Scholar] [CrossRef] [Green Version]
- Yang, F.; Guo, C.; Zhang, M.; Bhandari, B.; Liu, Y. Improving 3D printing process of lemon juice gel based on fluid flow numerical simulation. LWT 2019, 102, 89–99. [Google Scholar] [CrossRef] [Green Version]
- Leaw, Z.E.; Kong, I.; Pui, L.P. 3D printed corn starch-gelatin film with glycerol and hawthorn berry (Crataegus pinnatifida) extract. J. Food Process. Preserv. 2021, 45, e15752. [Google Scholar] [CrossRef]
- Benbettaieb, N.; Nyagaya, J.; Seuvre, A.M.; Debeaufort, F. Antioxidant activity and release kinetics of caffeic and p-coumaric acids from hydrocolloid-based active films for healthy packaged food. J. Agric. Food Chem. 2018, 66, 6906–6916. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Ni, Z.-J.; Thakur, K.; Zhang, J.-G.; Hu, F.; Wei, Z.-J. Preparation and characterization of clove essential oil loaded nanoemulsion and pickering emulsion activated pullulan-gelatin based edible film. Int. J. Biol. Macromol. 2021, 181, 528–539. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Pei, J.; Xiong, X.; Xue, F. Encapsulation of grapefruit essential oil in emulsion-based edible film prepared by plum (pruni domesticae semen) seed protein isolate and gum acacia conjugates. Coatings 2020, 10, 784. [Google Scholar] [CrossRef]
- Lidia Herrera, M.; Bustos, R.O.; Matiacevich, S.B.; Alarcón-Moyano, J.K. Alginate edible films containing microencapsulated lemongrass oil or citral: Effect of encapsulating agent and storage time on physical and antimicrobial properties. J. Food Sci. Technol. 2017, 54, 2878–2889. [Google Scholar]
- Jeya, J.; Chandrasekaran, M.; Venkatesan, S.P.; Sriram, V.; Britto, J.G.; Mageshwaran, G.; Durairaj, R.B. Scaling up difficulties and commercial aspects of edible films for food packaging: A review. Trends Food Sci. Technol. 2020, 100, 210–222. [Google Scholar] [CrossRef]
- Zhang, S.; Gu, W.; Cheng, Z.; Ying Li, Y.; Gu, W. Development of edible packaging materials. Adv. Mat. Res. 2014, 904, 189–191. [Google Scholar] [CrossRef]
- Moraes, J.O.d.; Scheibe, A.S.; Sereno, A.; Laurindo, J.B. Scale-up of the production of cassava starch based films using Tape-casting. J. Food Eng. 2013, 119, 800–808. [Google Scholar] [CrossRef]
Asian Plant | Plant Part | Extract | Base | Other Ingredients | References | |
---|---|---|---|---|---|---|
Type | Amount (%) | |||||
Black soybean | Seed | Ethanolic extract | 5, 10, 15 (w/w) | Chitosan | Acetic acid (1% (v/v)) Glycerol (0.6% (w/v)) | [6] |
Chrysanthemum morifolium | N/A | Essential oil | 0, 1, 2, 3, 4, 5, 6 (v/v) | Chitosan | Acetic acid (1% (v/v)) Glycerol (0.75% (w/v)) Tween 80 (0.2% (v/v)) | [14] |
Eriobotrya japonica Lindl. | Leaves | Ethanolic extract | 2, 3, 4 (w/w) | Banana peel starch | Cornstarch (1.4% (w/v)) Glycerol (0.76% (w/v)) | [24] |
Ginger | N/A | Essential oil | 2 (w/w) | Gelatin | Montmorillonite (MMT) (5% (w/w)) Glycerol (30% (w/w)) | [15] |
Ginger, turmeric and plai | Root | Essential oil | 25, 50, 100 (w/w) | Fish skin gelatin | Glycerol (30% (w/w)) Tween 20 (25% (w/w)) | [25] |
Hawthorn berry (Crataegus pinnatifida) | Fruits | Ethanolic extract | 1, 2, 3, 4 (v/v) | Alginate | Glycerol (0.75% (v/v)) Calcium chloride (1% (w/v)) | [5] |
Kiam (Cotylelobium lanceolatum craih) | Wood | Aqueous extract | 1, 2, 3, 4, 5 (v/v) | Hydroxypropyl methylcellulose (HPMC) | Sorbitol (0.4% (w/w)) | [22] |
Mangosteen | Peel | Ethanolic extract | 1 (v/v) | Porang glucomannan | Sorbitol (3% (v/v)) | [7] |
Moringa oleifera Lam. | Leaves | Ethanolic extract | 0.03, 0.05, 0.07, 0.1 (w/v) | Gelatin (Pufferfish skin) | Sorbitol (2% (v/v)) | [12] |
Neem (Azadirachta indica) | Flowers and leaves | Aqueous extract | 0, 0.1, 0.3, 0.5 (w/v) | Gelatin | Glycerol (25% (w/w)) | [11] |
Piper Betle Linn. | Leaves | Aqueous extract | 1, 2, 3 (v/v) | Chitosan | N/A | [26] |
Sophora japonica | N/A | Ethanolic extract | 1, 3, 7, 9 (w/w) | Artemisia sphaerocephala Krasch. Gum (ASKG) | Glycerin (0.3% (w/v)) | [10] |
Turmeric (Curcuma longa L.) | N/A | Aqueous extract | 13 (w/w) | Alginate | Glycerol (1% (v/v)) Calcium chloride (1% (w/v)) | [9] |
Essential Oil and/or Plant Extracts | Thickness (mm) | Moisture Content (%) | Water Solubility (%) at Room Temperature | Tensile Strength (MPa) | Elongation at Break (%) | Water Vapor Permeability | References |
---|---|---|---|---|---|---|---|
Black soybean seed extract | 0.081–0.086 | 21.22–31.01 | 12.79–32.02 | 20.64–23.24 | 64.58–73.88 | 12.58–15.41 (×10−11 g·m−1·s−1·Pa−1) | [6] |
Chrysanthemum morifolium essential oil | 0.050–0.150 | N/A | N/A | 5.12–15.477 | 7.770–17.877 | 18.99–38.83 (%) | [14] |
Eriobotrya japonica leaves extract | 0.060–0.069 | N/A | 19.00–42.00 | 0.50–0.64 | 38–47 | 0.29–0.32 (g·mm·h−1·m−2 kPa−1) | [24] |
Ginger essential oil | 0.066–0.068 | 15.00–17.00 | 37.00–42.00 | 30.2–32.4 | 48.2–58.7 | 0.27–0.30 (g·mm·h−1·m−2 kPa−1) | [15] |
Ginger, turmeric and Plai root essential oils | 0.041–0.057 | N/A | N/A | 17.20–43.62 | 19.59–74.68 | 1.88–3.11 (×10−11 g·m−1·s−1·Pa−1) | [25] |
Hawthorn berry (Crataegus pinnatifida) extract | 0.127–0.216 | 14.54–20.32 | 37.87–77.60 | 1.85–39.17 | 27.48–43.57 | N/A | [5] |
Kiam wood (Cotylelobium lanceolatum craih) extract | N/A | N/A | N/A | 18.48–38.61 | 11.19–28.82 | 15.09–27.77 (g mm/m2 day kPa) | [22] |
Mangosteen peel extract | 0.213–0.235 | N/A | N/A | 12.574–15.573 | N/A | N/A | [7] |
Moringa oleifera Lam. leaf extract | N/A | N/A | N/A | 55.68–84.49 | 29.85–65.93 | 1.38–1.64 (×10−9g m/m2 s Pa) | [12] |
Neem (Azadirachta indica) extract | 0.039–0.044 | N/A | 59.00–94.30 | 13.9–17.2 | 31.2–43.5 | 12.0–12.3 (×10−11g m−1·hour−1·Pa−1) | [11] |
Piper Betle Linn. leaf extract | N/A | 8.73–13.19 | 12.70–29.33 | 16.67–48.24 | 3.49–22.21 | 644.32–793.3 (g/m2/24 h) | [26] |
Sophora japonica extract | N/A | N/A | N/A | 25.99–29.62 | 23.00–59.67 | N/A | [10] |
Turmeric (Curcuma longa L.) extract | 0.096 ± 0.002 | 23.83 ± 1.05 | 100 ± 0.01 | 8.26 ± 1.79 | 35.94 ± 2.75 | 1.73 ± 0.049 (g mm/k Pa·h−1·m−2) | [9] |
Extract | Base | Pathogen | Zone of Inhibition (mm) | References | |
---|---|---|---|---|---|
Type | Amount (%) | ||||
Ethanolic hawthorn berry (Crataegus pinnatifida) extract | 1, 2, 3, 4 (v/v) | Alginate |
|
| [5] |
Aqueous kiam wood (Cotylelobium lanceolatum craih) extract | 1, 2, 3, 4, 5 (v/v) | HPMC |
|
| [22] |
Chrysanthemum morifolium essential oil | 0, 1, 2, 3, 4, 5, 6 (v/v) | Chitosan |
|
| [14] |
Food Model | Storage Condition (Temperature and Period) | Extract/ Essential Oil | Amount (%) | Quality Improvement | References |
---|---|---|---|---|---|
Chicken breast, pork, and beef loin | 4 °C (16 days) | Turmeric (Curcuma longa L.) aqueous extract | 13 (w/w) |
| [9] |
Lard | Room temperature (20 days) | Sophora japonica ethanolic extract | 1, 3, 7, 9 (w/w) |
| [10] |
Minced beef | 4 °C (7 days) | Neem (Azadirachta indica) aqueous extract | 0, 0.1, 0.3, 0.5 (w/v) |
| [11] |
Gouda cheese | 4 °C (16 days) | Moringa oleifera leaf ethanolic extract | 0.03, 0.05, 0.07, 0.1 (w/v) |
| [12] |
Chicken and beef | 4 °C (5 days) | Chrysanthemum morifolium essential oil | 0, 1, 2, 3, 4, 5, 6 (v/v) |
| [14] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kong, I.; Lamudji, I.G.; Angkow, K.J.; Insani, R.M.S.; Mas, M.A.; Pui, L.P. Application of Edible Film with Asian Plant Extracts as an Innovative Food Packaging: A Review. Coatings 2023, 13, 245. https://doi.org/10.3390/coatings13020245
Kong I, Lamudji IG, Angkow KJ, Insani RMS, Mas MA, Pui LP. Application of Edible Film with Asian Plant Extracts as an Innovative Food Packaging: A Review. Coatings. 2023; 13(2):245. https://doi.org/10.3390/coatings13020245
Chicago/Turabian StyleKong, Ianne, Ivana Gelasia Lamudji, Kathleen Josephine Angkow, Rayyane Mazaya Syifa Insani, Muhammad Abdurrahman Mas, and Liew Phing Pui. 2023. "Application of Edible Film with Asian Plant Extracts as an Innovative Food Packaging: A Review" Coatings 13, no. 2: 245. https://doi.org/10.3390/coatings13020245
APA StyleKong, I., Lamudji, I. G., Angkow, K. J., Insani, R. M. S., Mas, M. A., & Pui, L. P. (2023). Application of Edible Film with Asian Plant Extracts as an Innovative Food Packaging: A Review. Coatings, 13(2), 245. https://doi.org/10.3390/coatings13020245