Nonlinear Optics for Crystallographic Analysis in Lead Zirconate Titanate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample
2.2. SHG Microscopy
2.3. Modeling the SHG Intensity
2.4. Electron Backscattered Diffraction (EBSD)
3. Results
3.1. SHG Microscopy
3.2. Electron Backscattered Diffraction (EBSD)
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jian, L.; Kumar, A.S.; Lekha, C.C.; Vivek, S.; Salvado, I.; Kholkin, A.L.; Nair, S.S. Strong sub-resonance magnetoelectric coupling in PZT-NiFe2O4-PZT thin film composite. Nano-Struct. Nano-Objects 2019, 18, 100272. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, L.; Wang, L.; Wang, F.; Pan, G. A Flexible e-skin based on micro-structured PZT thin films prepared via a low-temperature PLD method. J. Mater. Chem. C 2019, 7, 4760–4769. [Google Scholar] [CrossRef]
- Muralt, P.; Polcawich, R.G.; Trolier-McKinstry, S. Piezoelectric thin films for sensors, actuators, and energy harvesting. MRS Bull. 2009, 34, 658–664. [Google Scholar] [CrossRef] [Green Version]
- Oikawa, T.; Aratani, M.; Funukubo, H.; Saito, K.; Mizuhira, M. Composition and orientation dependence of electrical properties of epitaxial Pb(Zr1-xTix)O3 thin films grown using metalorganic chemical vapor deposition. J. Appl. Phys. 2004, 95, 3111–3115. [Google Scholar] [CrossRef]
- Izyumskaya, N.; Alivov, Y.I.; Cho, S.J.; Morkoç, H.; Lee, H.; Kang, Y.S. Processing, structure, properties, and applications of PZT thin films. Crit. Rev. Solid State Mater. Sci. 2007, 32, 111–202. [Google Scholar] [CrossRef]
- Yamashita, K.; Nakajima, S.; Shiomi, J.; Noda, M.; Muralt, P. Vibrating Piezoelectric Energy Conversion Efficiency of Sol-Gel PZT Films with Various Crystal Orientations on MEMS Buckled Diaphragm Structures. In Proceedings of the 2019 IEEE International Symposium on Applications of Ferroelectrics (ISAF), Lausanne, Switzerland, 14–19 July 2019. [Google Scholar] [CrossRef]
- Tan, G.; Maruyama, K.; Kanamitsu, Y.; Nishioka, S.; Ozaki, T.; Umegaki, T.; Hida, H.; Kanno, I. Crystallographic contributions to piezoelectric properties in PZT thin films. Sci. Rep. 2019, 9, 7309. [Google Scholar] [CrossRef] [Green Version]
- Kolosov, V.Y.; Zhigalina, O.M.; Khmelenin, D.N.; Bokuniaeva, A.O. Crystal lattice orientation analysis of PZT thin film with 10% La content by transmission electron microscopy. AIP Conf. Proc. 2018, 2015, 020043. [Google Scholar] [CrossRef]
- Fan, J.; Lu, X.; Cao, W. Computer-aided characterization of ferroelectric phase transitions and domain structures using polarizing light microscopy. Appl. Phys. Lett. 2022, 120, 072902. [Google Scholar] [CrossRef]
- Qiu, C.; Wang, B.; Zhang, N.; Zhang, S.; Liu, J.; Walker, D.; Wang, Y.; Tian, H.; Shrout, T.R.; Xu, Z.; et al. Transparent ferroelectric crystals with ultrahigh piezoelectricity. Nature 2020, 577, 350–354. [Google Scholar] [CrossRef]
- Mazumder, N.; Balla, N.K.; Zhuo, G.Y.; Kistenev, Y.V.; Kumar, R.; Kao, F.J.; Brasselet, S.; Nikolaev, V.V.; Krivova, N.A. Label-free non-linear multimodal optical microscopy—Basics, development, and applications. Front. Phys. 2019, 7, 170. [Google Scholar] [CrossRef] [Green Version]
- Maragkakis, G.M.; Psilodimitrakopoulos, S.; Mouchliadis, L.; Paradisanos, I.; Lemonis, A.; Kioseoglou, G.; Stratakis, E. Imaging the crystal orientation of 2D transition metal dichalcogenides using polarization-resolved second-harmonic generation. Opto-Electron. Adv. 2019, 2, 190026-1–190026-8. [Google Scholar] [CrossRef]
- Zu, R.; Wang, B.; He, J.; Wang, J.J.; Weber, L.; Chen, L.Q.; Gopalan, V. Analytical and numerical modeling of optical second harmonic generation in anisotropic crystals using♯ SHAARP package. Npj Comput. Mater. 2022, 8, 246. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, Y.; Guo, Q.; Zhong, X.; Chu, Y.; Lu, H.; Zhong, G.; Jiang, J.; Tan, C.; Liao, M.; et al. Characterization of domain distributions by second harmonic generation in ferroelectrics. Npj Comput. Mater. 2018, 4, 39. [Google Scholar] [CrossRef] [Green Version]
- Cherifi-Hertel, S.; Bulou, H.; Hertel, R.; Taupier, G.; Dorkenoo KD, H.; Andreas, C.; Guyonnet, J.; Gaponenko, I.; Gallo, K.; Paruch, P. Non-Ising and chiral ferroelectric domain walls revealed by nonlinear optical microscopy. Nat. Commun. 2017, 8, 15768. [Google Scholar] [CrossRef] [Green Version]
- Garcia, J.E.; Perez, R.; Ochoa, D.A.; Albareda, A.; Lente, M.H.; Eiras, J.A. Evaluation of domain wall motion in lead zirconate titanate ceramics by nonlinear response measurements. J. Appl. Phys. 2008, 103, 054108. [Google Scholar] [CrossRef]
- Kim, E.; Steinbrück, A.; Buscaglia, M.T.; Buscaglia, V.; Pertsch, T.; Grange, R. Second-harmonic generation of single BaTiO3 nanoparticles down to 22 nm diameter. ACS Nano 2013, 7, 5343–5349. [Google Scholar] [CrossRef]
- Li, C.; Wang, X.; Wu, Y.; Liang, F.; Wang, F.; Zhao, X.; Yu, H.; Zhang, H. Three-dimensional nonlinear photonic crystal in naturally grown potassium–tantalate–niobate perovskite ferroelectrics. Light Sci. Appl. 2020, 9, 193. [Google Scholar] [CrossRef]
- Wang, J.S.; Jin, K.J.; Gu, J.X.; Wan, Q.; Yao, H.B.; Yang, G.Z. Direct evidence of correlation between the second harmonic generation anisotropy patterns and the polarization orientation of perovskite ferroelectric. Sci. Rep. 2017, 7, 9051. [Google Scholar] [CrossRef]
- Strkalj, N.; Bortis, A.; Campanini, M.; Rossell, M.D.; Fiebig, M.; Trassin, M. Optical second harmonic signature of phase coexistence in ferroelectric| dielectric heterostructures. Phys. Rev. B 2022, 105, 174101. [Google Scholar] [CrossRef]
- Sherstyuk, N.E.; Mishina, E.D.; Lavrov, S.D.; Buryakov, A.M.; Marchenkova, M.A.; Elshin, A.S.; Sigov, A.S. Optical second harmonic generation microscopy for ferroic materials. Ferroelectrics 2015, 477, 29–46. [Google Scholar] [CrossRef]
- Pronin, I.P.; Kaptelov, E.Y.; Senkevich, S.V.; Klimov, V.A.; Zaĭtseva, N.V.; Shaplygina, T.A.; Pronin, V.P.; Kukushkin, S.A. Crystallization of thin polycrystalline PZT films on Si/SiO2/Pt substrates. Phys. Solid State 2010, 52, 132–136. [Google Scholar] [CrossRef]
- Pronin, V.P.; Dolgintsev, D.M.; Osipov, V.V.; Pronin, I.P.; Senkevich, S.V.; Kaptelov, E.Y. The change in the phase state of thin PZT layers in the region of the morphotropic phase boundary obtained by the RF magnetron sputtering with varying target-substrate distance. IOP Conf. Ser. MSandE 2018, 387, 012063. [Google Scholar] [CrossRef]
- Valeeva, A.R.; Kaptelov, E.Y.; Pronin, I.P.; Senkevich, S.V.; Pronin, V.P. Mechanical stresses in lead zirconate titanate thin films formed on substrates differing in temperature coefficients of linear expansion. Phys. Complex Syst. 2022, 3, 159–166. [Google Scholar] [CrossRef]
- Degheidy, A.R.; Elkenany, E.B. Impact of temperature and pressure on mechanical properties of GaxIn1− xAsyP1− y alloy lattice matched to different substrates. J. Alloys Compd. 2015, 652, 379–385. [Google Scholar] [CrossRef]
- Dolino, G.; Lajzerowicz, J.; Vallade, M. Second-harmonic light scattering by domains in ferroelectric triglycine sulfate. Phys. Rev. B 1970, 2, 2194. [Google Scholar] [CrossRef]
- Birss, R.R. Symmetry and Magnetism, 2nd ed.; North-Holland Publisher Company: Amsterdam, The Netherlands, 1966. [Google Scholar]
- Musterman, E.J.; Dierolf, V.; Jain, H. Curved lattices of crystals formed in glass. Int. J. Appl. Glass Sci. 2022, 13, 402–419. [Google Scholar] [CrossRef]
- Lutjes, N.R.; Zhou, S.; Antoja-Lleonart, J.; Noheda, B.; Ocelík, V. Spherulitic and rotational crystal growth of Quartz thin films. Sci. Rep. 2021, 11, 14888. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elshin, A.S.; Staritsyn, M.V.; Pronin, I.P.; Senkevich, S.V.; Mishina, E.D. Nonlinear Optics for Crystallographic Analysis in Lead Zirconate Titanate. Coatings 2023, 13, 247. https://doi.org/10.3390/coatings13020247
Elshin AS, Staritsyn MV, Pronin IP, Senkevich SV, Mishina ED. Nonlinear Optics for Crystallographic Analysis in Lead Zirconate Titanate. Coatings. 2023; 13(2):247. https://doi.org/10.3390/coatings13020247
Chicago/Turabian StyleElshin, Andrey Sergeevich, Mikhail Vladimirovich Staritsyn, Igor Petrovich Pronin, Stanislav Viktorovich Senkevich, and Elena Dmitrievna Mishina. 2023. "Nonlinear Optics for Crystallographic Analysis in Lead Zirconate Titanate" Coatings 13, no. 2: 247. https://doi.org/10.3390/coatings13020247
APA StyleElshin, A. S., Staritsyn, M. V., Pronin, I. P., Senkevich, S. V., & Mishina, E. D. (2023). Nonlinear Optics for Crystallographic Analysis in Lead Zirconate Titanate. Coatings, 13(2), 247. https://doi.org/10.3390/coatings13020247